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UNIFORMITY IN DIOPHANTINE GEOMETRY

by Thomas Scanlon

Introduction

Mordell (1922/23) concluded his study of polynomial equations of degrees three and
four in rational numbers by saying “in conclusion, I might note that the preceding works
suggest to me the truth the following statements, concerning indeterminate equations,
none of which, however, I can prove.” The last of the statements was that “the same
theorem” (namely that there are only finitely many rational solutions) “holds for any
homogeneous equation of genus greater than unity, say, f(x, y, z) = 0.” Mordell’s
conjecture as such was proven with the celebrated work of Faltings (1983).

The problem of effectively bounding the number of solutions by a function of purely
geometric data has remained elusive over the past four decades. This exposé focuses on
some recent spectacular progress giving such bounds and also resolving related questions.

What we might mean by effective bounds depends on the situation. When considering
Mordell’s conjecture as a statement about rational points on curves, one might hope to
bound the number of such rational points by a constant depending only on the genus
of the curve and the degree over the rational numbers of the number field in which
one seeks the solutions. Alternatively, we might hope to find bounds on the sizes as
measured, say by height, of the points on such a curve depending on such data as the
heights of the coefficient of the defining equations and the genus of the curve. The
problem in the first presentation remains open in general. Effective proofs of Mordell’s
conjecture due to Bombieri (1990) and Vojta (1992) give methods for bounding the
number of rational points on a curve from some arithmetic information about the curve.
The kind of uniform bounds that we discuss in this exposé align with and improve these
bounds by eliminating the dependence on the arithmetic data.

Using the theorem of Mordell (1922/23) and Weil (1929) that the group of rational
points on an abelian variety is finitely generated as an abelian group, Lang reformulated
the Mordell conjecture in a more geometric form which then naturally generalizes to a
statement about higher dimensional varieties.

Start with a finitely generated field K of characteristic zero and C a smooth projective
curve of genus at least two over K. Fixing any base point on C (which we may assume
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to be K-rational, for otherwise C(K) = ∅ which is finite) we have an embedding of C
as a closed algebraic subvariety of its Jacobian, Jac(C), which is an abelian variety
defined over K. Let Γ := Jac(C)(K) be the finitely generated group of K-rational
points on the Jacobian. Since the embedding induces a bijection on rational points, we
may realize C(K) as the intersection C(C) ∩ Γ. After making a few other observations,
one sees that the Mordell conjecture is equivalent to the assertion that for any abelian
variety A over the complex numbers, finitely generated group Γ ≤ A(C), and algebraic
curve C ⊆ A of genus at least two, Γ ∩ C(C) is finite. This formulation of the Mordell
conjecture suggests the Mordell–Lang conjecture which asserts that for any abelian
variety A defined over the complex numbers, finite rank subgroup Γ ≤ A(C) (by which
we mean that rk Γ := dimQ Γ ⊗ Q < ∞), and closed subvariety X ⊆ A, the intersection
X(C) ∩ Γ is a finite union of cosets of subgroups of Γ.

The formulation of the Mordell–Lang conjecture suggests geometric approaches to
its proof based on such methods as the geometry of numbers and the complex analytic
geometry of the presentation of an abelian variety as a complex torus, that is, as
the quotient of a finite dimensional complex vector space by a lattice. Historically,
some partial results towards Mordell’s conjecture used this kind of geometric reasoning,
notably with the proof of Mordell’s conjecture over function fields by Manin (1963) and
the gap principle of Mumford (1965a), but the original proofs of the full theorem are
fundamentally arithmetic in nature making use of Arakelov theory.

The main theorem of Gao, Ge, and Kühne (2021) takes the following form.

Theorem 0.1. — There is a function c(g, d) depending on two natural number ar-
guments so that for any abelian variety A over the complex numbers given with an
appropriately chosen very ample line bundle L, algebraic subvariety X, and finite rank
subgroup Γ ≤ A(C), there is a finite (possibly empty) sequence of connected algebraic
subgroups B1, . . . , Bm ≤ A and points γ1, . . . , γm so that

X(C) ∩ Γ =
m⋃
i=1

(γi +Bi(C)) ∩ Γ

where
m ≤ c(dimA, degL(X))1+rk Γ

and degL(Bi) ≤ c(dimA, degL(X)) for each i.

In the special case that X is a curve of genus greater than one embedded in its
Jacobian, there are no translates of positive dimensional algebraic subgroups of A
contained in X so that Theorem 0.1 asserts simply that the number of points in the
intersection X(C) ∩ Γ is at most c1+rk Γ where c depends only on the degree of X as
subvariety of A. This uniform result for curves may be obtained by combining the main
theorem of Dimitrov, Gao, and Habegger (2021) with the results of Kühne (2021) and
answers positively a problem raised by Mazur (1986).

While the proof of Theorem 0.1 does take into account some of the geometric meth-
ods anticipated by Lang’s formulation of the Mordell–Lang conjecture, refined height
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estimates and equidistribution theorems are at its heart. The method used yields uni-
form versions of the Bogomolov conjecture about points of small height on subvarieties
of abelian varieties. We will delay the statement of this theorem until after we have
reviewed some of the theory of heights in Section 1.2.

A crucial new ingredient in these proofs is the study of “non-degenerate varieties”
which may be defined in terms of differential geometric properties of the Betti map. We
delay a description of this condition to Section 3.

An alternative approach to the uniform Mordell–Lang and Bogomolov conjectures is
given by Yuan (2021). Yuan’s method is based on a refined theory of adèlic line bundles
developed by Yuan and Zhang (2021) and circumvents the analysis of non-degenerate
varieties.

The main body of this exposé is organized as follows. We begin in Section 1 by
recalling some of the theory of abelian varieties and of height functions. We recall some
of the earlier work on these problems in Section 2. In particular, in Subsection 2.1 we
recall the methods of Mumford and Vojta which were then refined and extended by
Rémond for analyzing points which are nearly parallel relative. In Subsection 2.2 we
survey some of the work on points of small height, discussing specifically the Manin–
Mumford and Bogomolov conjectures. Section 3 is devoted to Betti maps and their
interaction with algebraic subvarieties of abelian varieties. We enter into some of the
technical details of the uniform Mordell–Lang conjecture in Section 4 where we outline
the proof of the crucial new height inequality of Dimitrov, Gao, and Habegger (2021).
We explain how points of small height are to be analyzed in Section 5. Finally, in
Section 6 the new height inequalities and equidistribution theorems are combined to
deduce the new uniform diophantine geometric theorems.

1. Basic properties of the arithmetic and geometry of abelian varieties

1.1. Abelian varieties

Abelian varieties lie at the core of the theorems we are considering. This subject is
classical and well exposed in several excellent textbooks and course notes, including
Lang (1983), Lange (2023), Milne (2008), and Mumford (2008). In this section we recall
some of the basic theory.

By definition, an abelian variety A over a field K is a connected, projective algebraic
group. It is a consequence of this definition that the group structure on A is commutative
so that the adjective “abelian” which was chosen to honor Abel’s work on abelian
integrals remains consistent with our common practice of calling commutative groups
“abelian”.

When K = C is the field of complex numbers, then since A is projective, the group
A(C) is a compact, commutative, complex Lie group. As such, A(C) fits into an exact
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sequence of complex Lie groups

0 ΛA T0A(C) A(C) 0expA

where T0A is the tangent space of A at the identity element 0, expA is the Lie exponential
map of A, and ΛA := ker expA is a lattice in T0A(C). Fixing a basis of T0(C) we may
regard it as Cg where g = dimA and A(C) as the quotient Cg/ΛA, a complex torus.

Passing to universal covers, it is easy to see that the data of a map of complex tori
ψ : A(C) → B(C) between complex abelian varieties is equivalent to that of a linear
map ψ̃ : T0A(C) → T0B(C) which takes ΛA to ΛB. In this way, the space of complex tori
of dimensions g may be parameterized by the space of lattices in Cg up to the action of
GLg(C). Since not every complex torus is (the analytification of) an abelian variety, we
must restrict the space of lattices in order to describe moduli spaces of abelian varieties.

Let hg the gth Siegel upper halfspace consisting of symmetric g × g complex matrices
whose imaginary parts are positive definite. For a sequence D = ⟨d1, . . . , dg⟩ of positive
integers with di|di+1 for 1 ≤ i < g we overload our notation writing D = diag(d1, . . . , dg)
for the diagonal matrix with di in the (i, i)-entry for 1 ≤ i ≤ g.

The algebraic group Sp2g,D is defined by

Sp2g,D := {g ∈ GL2g : g
(

0 −D
D 0

)
g⊺ =

(
0 −D
D 0

)
} .

Writing elements of Sp2g(R) as 2 × 2 matrices of g × g real matrices, we have a
transitive action of Sp2g(R) on hg via the formula(

A B

C D

)
· τ = (Aτ +B)(Cτ +D)−1 .

Via this action, we may see hg as the quotient of Sp2g by the unitary group.
Form the semidirect product R2g ⋊ Sp2g,D(R) via the usual action of GL2g on 2g-

dimensional space. This group R2g ⋊ Sp2g,D(R) acts on Cg × hg via the rule

(r1, . . . , r2g,M) · (z, τ) := (z + (r1, . . . , rg)D + (rg+1, . . . , r2g)τ,M · τ) .

Given τ ∈ hg, we form the lattice Λτ,D := DZg + τZg. The complex torus Cg/ΛD,τ

is an abelian variety with a polarization of type D. Moreover, (the analytification of)
every complex abelian variety arises in this way.

The coarse moduli space of g-dimensional abelian varieties with a polarization of
type D may be realized as Sp2g,D(Z)\hg. Taking appropriate arithmetic subgroups
Γ ≤ Sp2g,D(Z) the quotient Ag,D,Γ = Γ\hg may be seen as a quasiprojective variety over
the algebraic numbers giving a fine moduli space for polarized g-dimensional abelian
varieties with some level structure and the universal abelian variety Ag,D,Γ → Ag,D,Γ
may be realized as the quotient (Z2g ⋊ Γ)\(Cg × hg). For example, if N ≥ 3 and Γ is
the kernel of the reduction map from Sp2g,D(Z) → Sp2g,D(Z/NZ) then Ag,D,Γ = Ag,D,N

is the moduli space of abelian varieties with a polarization of type D and full level N
structure.
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For almost the problems we consider, the specific choice of polarization type and level
structure is irrelevant. Indeed, even when one must keep track of these data in the
course of a proof, one can usually reduce to the case of principally polarized abelian
varietes. We shall simply write Ag → Ag for some suitable choice of a universal abelian
variety of dimension g.

Given an algebraically closed field k of characteristic zero, K an algebraically closed
extension of k, and A an abelian variety over K, the K/k-trace of A, TrK/k A, is an
abelian variety over k given together with an embedding ρ : (TrK/k A)K ↪→ A of its base
change to K in A. We write AK/k for the image of ρ. The map ρ is universal for maps
from abelian varieties over k to A in the sense that if B is an abelian variety defined
over k and ψ : BK → A is a map of algebraic groups from the base change of B to K
to A then there is a unique map ψ̃ : B → TrK/k A for which ψ = ρ ◦ ψ̃K .

1.2. Heights

Heights give a precise sense to the arithmetic size of points on algebraic varieties. For
accounts of the theory of heights see Bombieri and Gubler (2006) or Lang (1995).

We mostly restrict our attention to heights of Qalg-valued points of algebraic variety.
However, we should note that theories of heights make sense for points valued in other
fields, for example, in algebraic extensions of function fields and that this more general
theory makes an appearance with the function field Bogomolov conjecture.

Consider a number field K. By a normalized place v on K we mean an absolute value
| |v which comes by pullback from an embedding of K into R, C, or a finite extension
of Qp. Let us write Kv for the completion of K with respect to this absolute value.
We define dv := [Kv : R] if | |v is not ultrametric and dv := [Kv : Qp] if Kv is a finite
extension of the p-adic numbers.

For a natural number N , the logarithmic Weil height on PN(K), hPN ,K : PN(Qalg) →
[0,∞), is defined by

hPN ,K([a0 : . . . : aN ]) := 1
[K : Q]

∑
v

dv log max{|a0|v, . . . , |aN |v}

where the sum is taken over all normalized places on K. If K ≤ L is an extension
of number fields, then the restriction of hPN ,L to PN(K) is equal to hPN ,K . Thus,
expressing Qalg as a direct limit of number fields, we have a well-defined height function
hPN : PN(Qalg) → [0,∞).

For X ⊆ PN an embedded projective variety, we may restrict the height function hPN

to X(Qalg) obtaining hX : X(Qalg) → [0,∞). In what follows, we will drop the subscript
writing simply “h”.

If f : X → Y is a morphism of degree d between embedded projective varieties, then
there are constants C1 and C2 so that for all P ∈ PN(Qalg) we have dh(P ) + C1 ≤
h(f(P )) ≤ dh(P ) + C2. That is, h(f(P )) = dh(P ) +O(1). In particular, if d = 1, then
the difference between h(f(P )) and h(P ) is bounded.
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Consequently, if L is any very ample line bundle on X and ψ : X ↪→ PN and ϕ : X ↪→
PM are two projective embeddings obtained from L, then the difference between the
height functions on X obtained as hψ(P ) := h(ψ(P )) and hϕ(P ) := h(ϕ(P )) is bounded.
That is, for each very ample line bundle L on a projective variety X, we may associate
a function hX,L on X(Qalg) which is well-defined up to a bounded function by the rule
that hX,L(P ) = hPN (ψL(P )) + O(1) where ψL : X ↪→ PN is a projective embedding
associated to L.

The Weil height machine extends the association of height functions to general line
bundles. That is, there is a function which associates to each pair (X,L) consisting of
a projective variety X defined over Qalg and a line bundle L on X a height function
hX,L : X(Qalg) → R, well-defined up to a bounded function, so strictly speaking an
element of the quotient of the group of real valued functions on X(Qalg) by the group of
bounded real valued functions on that set. This association satisfies the following rules.

– hPN ,O(1) = h+O(1)
– If f : X → Y is regular map of projective varieties, and L is a line bundle on Y , then
hX,f∗L = hY,L ◦ f +O(1). So, in particular, if L is is very ample and ψL : X ↪→ PN
is a projective embedding for which L = ψ∗

LO(1), then hX,L = h ◦ ψL +O(1).
– hX,L ≥ O(1) outside the base locus of L.
– If L is ample, then for any fixed representative of hX,L, any natural number d, and

any real number ϵ, the set {a ∈ X(Qalg) : [Q(a) : Q] ≤ d and hX,L(a) < ϵ} is finite.
– hX,L⊗M = hX,L + hX,M +O(1)

Since it is more convenient to work with actual functions rather than equivalence
classes of functions up to bounded functions, often specific choices are made. Ideally,
there would be a canonical choice of such a representative. On projective varieties
given with a polarized algebraic dynamical system there is such an associated canonical
height. Here, a polarized algebraic dynamical system consists of a projective variety X,
an ample line bundle L on X, and a self-map f : X → X for which f ∗L ≈ L⊗q for
some integer q > 1. Starting with any function h in the class of hX,L we may define the
canonical height by

ĥX,L,f (x) := lim
n→∞

1
qn
h(fn(x)) .

This canonical height is the unique function ĥ in the class of hX,L,f satisfying the
functional equation ĥ ◦ f = qĥ. It follows from this equation that for any algebraic
point a ∈ X(Qalg) we have ĥX,L,f (a) = 0 if and only if a is f -preperiodic, that is, there
are natural numbers m < n with fm(a) = fn(a).

On any abelian variety A there is an ample, symmetric line bundle L, where by
“symmetric” we mean that if [−1] : A → A is the additive inverse map on A, then
L ≈ [−1]∗L. For such a choice of L we have [2]∗L ≈ L⊗4. The canonical height on A is
then defined to be ĥA,L,[2]. Specializing to this case of abelian varieties, we see that an
algebraic point has canonical height zero if and only if it is torsion.
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The canonical height is a quadratic form so that we may define an inner product on
the real vector space A(Qalg) ⊗R by the rule that ⟨P,Q⟩ := 1

2(ĥ(P +Q) − ĥ(P ) − ĥ(Q)).
The Faltings height gives fully well-defined heights. We refer the reader to the

work of Bost, Gillet, and Soulé (1994) for the details about the theory of the Faltings
height, comparisons between the Faltings height and related constructions, and most
importantly, for the relevant definitions of metrized and adelic line bundles, of Chern
classes of these, and of arithmetic intersection theory. The reader would also profit
from the excellent survey of Chambert-Loir (2021). For a projective algebraic variety X
over a number field K with an ample line bundle L on X and an adelic metric || ||
on L, the height of an irreducible subvariety Y ⊆ X of X is defined to be h(Y ) :=
d̂egĉ1(L|Y ,|| ||)dim Y +1

(dimY+1) degL Y
.

We will use a more down to earth definition of the height of a projective variety
due to Philippon (1995) (which is a revision of the original definition of Philippon
(1991) bringing this notion of height in line with the Faltings height, at least, up to a
normalization factor). This definition is based on the parameterization of subvarieties
of a given projective space by Chow forms which may themselves be regarded as points
in some associated projective space. The height is then the height of the Chow form
regarded as a point in a projective space with a certain adjustment to the archimedian
contribution.

Let us recall first the construction of the Chow form. For an irreducible subvariety
X ⊆ Pn of dimension d the space S of n − (d + 1)-planes V ⊆ Pn which are incident
to X is a hypersurface in the the Grassmannian of such planes. As such, S may be
defined by a form fX in variables (xi,j){0≤i≤dimX,0≤j≤n}, homogeneous in (xi,0, . . . , xi,n)
for each i. Assume now that X is defined over a number field K and that we have
fixed a Chow form fX . For each place v of K we define a local contribution hv(X)
to the height h(X) of X. One might regard hv(X) a local height, though, as is often
the case when decomposing a height function into local constribitions, it lacks some
crucial features of a height function. For example, it depends on the choice of the Chow
form fX whereas h(X) does not.

We define a normalizing factor by dv := [kv :Qv ]
[k:Q] where kv is the completion of k with

respect to v and we are abusing notation by writing v for its restriction to Q. The local
height hv(X) of X at the place v is computed differently for ultrametric and archimedian
places. In the ultrametic case, hv(X) is the normalizing factor dv times the maximum
of log |aℓ|v as aℓ runs through the coefficients of fX . The case where v is archimedian
corresponds to an embedding k ↪→ C. We define

hv(X) := dv

∫
(SN+1)dim X+1

log |fX |vdµ+ (deg fX)
n∑
i=1

1
2i

where here S2n+1 is the unit sphere in Cn+1 and µ is the product of the the usual
invariant measures on the sphere of total mass one. The height h(X) of X is then the
sum ∑

v hv(X).
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2. Some relevant earlier approaches to the Mordell–Lang problem

2.1. Mumford’s gap and Vojta’s method
Mumford (1965a) opens with

It is somewhat surprising that the systematic evaluation of the heights of
rational points on a curve and its jacobian variety and particularly their
relation to each other should yield any new information. Nonetheless this
appears to be the case and the result is described in this article.

This evaluation is based on some simple observations about Euclidean spaces coupled
with estimates on heights of differences of points on the curve. For any given angle θ
with 0 < θ < π

2 there is a constant c = c(θ) so that the Euclidean space Rn may be
covered by cn sectors in which the angle between any two points is at most θ.

Consider an abelian variety A over a number field K, a finite rank subgroup Γ ≤
A(Kalg) of the K-rational points, and an algebraic subvariety X ⊆ A. Regard ΓR :=
Γ ⊗ R as a Euclidean space using the inner product coming from the canonical height.
Set r := dimR ΓR.

Given an algebraic sub-variety X ⊆ A, we find some suitable ϵ > 0 so that we may
break the problem of describing X(K) ∩ Γ into the subproblems of describing the points
on X of small height, meaning of height at most ϵ, and then also of the points large
height, meaning of height greater than ϵ. We further break up the points of large
height into those finitely many sectors on which the angles between the points are small
meaning at most θ, again for some well chosen angle θ.

When working with K-rational points, the set of small points is finite. For the large
points, Mumford (1965b) proves what is now known as Mumford’s gap that the heights
of points on X for which the angles between the points is small must grow exponentially.

Theorem 2.1. — Let K be a number field and let X be a smooth projective curve of
genus at least two embedded in its Jacobian. Then there are constants c1, c2, and c3
with 0 < c2 < 1 and 1 < c3 where c1 depends on X, but c2 and c3 do not, so that for any
two algebraic points P and Q from X(Kalg) with P ̸= Q and ĥ(P ) ≤ ĥ(Q) if c1 ≤ ĥ(P )
and ⟨P,Q⟩

ĥ(P )̂h(Q)
≥ c2, then ĥ(Q) ≥ c3ĥ(P ).

Interestingly, if we were to extend the theory of heights to function fields over finite
fields, then Mumford’s gap remains valid even though the naïve transposition of Mordell’s
conjecture is false. More importantly for purposes of studying the finiteness theorems
uniformly, one should note that the points P and Q are merely algebraic.

Over number fields, Vojta (1991) proves a complementary inequality showing that
the heights of points in the same sector must be comparable.

Theorem 2.2. — With the hypotheses as in Theorem 2.1, there are positive constants
κ1, κ2, and κ3 with 0 < κ2 < 1 and κ3 > 1 so that if P and Q are any two distinct
algebraic points in X(Kalg) with ĥ(P ) ≥ κ1 and ⟨P,Q⟩

ĥ(P )̂h(Q)
≥ κ2, then ĥ(Q) ≤ κ3ĥ(P ).
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This inequality gives the finiteness of the set of rational points and combined with
Mumford’s gap may be used to give better bounds on the number of rational points
which may be effectively computed from a presentation of the curve and the data of the
height of some point in each of the sectors. Bombieri (1990) reworks Vojta’s method
replacing some of the sophisticated arguments based on arithmetic intersection theory
with more explicit computations with polynomials.

When considering the Mordell–Lang problem of intersections X ∩Γ where X ⊆ A is a
subvariety and Γ ≤ A(C) is a finite rank subgroup, it may happen that this intersection
is infinite. For instance, this could happen if X were a translate of a positive dimensional
algebraic subgroup of A, or even if X simply contains such a translate. We may restate
the Mordell–Lang conjecture as a simple finiteness assertion by removing from X these
potential counterexamples.

Definition 2.3. — The Ueno locus Ueno(X) (sometimes also called the Kawamata
locus) of X is the union of all translates of positive dimensional algebraic subgroups
of B which are fully contained in X. We write X0 for X ∖ Ueno(X).

From the definition, Ueno(X) is merely a union of algebraic varieties. In fact, it is
actually a closed subvariety of X.

Lemma 2.4. — Let X ⊆ A be an irreducible subvariety of the abelian variety A. Let
S = {a ∈ A : a + X = X} be the stabilizer of X in A. Then Ueno(X) is a closed
subvariety of X which is a proper subvariety of X if and only if S is finite.

The proof of Lemma 2.4 proceeds by induction on dimX by considering the family of
varieties X ∩ (a+X) for which X ̸= (a+X) noting that under the hypothesis that S is
finite the Ueno locus is contained in the union of the positive dimensional components
of these intersections.

It follows from Lemma 2.4 that the Ueno locus varies algebraically in families. That
is, if π : A → S is a family of abelian varieties and X ⊆ A is a subvariety of A, then
there is a subvariety U ⊆ X of X so that for any s ∈ S the fiber Us := (π|U)−1{s} is
the Ueno locus of Xs.

As a standard dévissage, the Mordell–Lang problem for X, A, and Γ may be solved
first by working with the irreducible components of X separately, and then after reducing
to the case that X is irreducible, by passing to the image of X and Γ in the quotient
of A by S so that we may assume that X is irreducible and has a trivial stabilizer. With
this reduction, Mordell–Lang becomes the assertion that X0 ∩ Γ is finite.

Faltings (1991) proves Mordell–Lang when Γ is finitely generated. Of particular
relevance to the new uniform versions of Mordell–Lang is the work of Rémond (2000)
giving an effective version of the Mordell–Lang conjecture. A key step in that proof is
a higher dimensional version of Vojta’s inequality.
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Theorem 2.5. — Let K be a number field, A an abelian variety with a fixed choice L of
a symmetric ample line bundle coming from a projective embedding A ↪→ Pn, and X ⊆ A

an algebraic subvariety. There are positive constants c1, c2, and c3 with 0 < c2 < 1 and
c3 > 1 so that whenever P0, . . . , PdimX is a sequence of dimX + 1 distinct algebraic
points in X(Kalg) with

– ĥ(P0) ≥ c3,
– ĥ(Pi+1) ≥ c1ĥ(Pi) for 0 ≤ i < dimX, and
– ⟨Pi,Pi+1⟩

h(Pi)h(Pi+1) ≥ c2 for 0 ≤ i < dimX,
then at least one of the points Pi belongs to Ueno(X).

In Theorem 2.5, the constants c1 and c2 depend only geometric data, namely the
dimension and degree of X and Rémond (2000) expresses them explicitly. Indeed, one

may take c1 =
(
max{deg(X), (6d)2d}

)d3d2

where d = dim(X) + 1 and c2 = 1 − 1
c1

. The
constant c3 is also expressed explicitly and it depends on arithmetic data, namely h1,
the height of the polynomials defining the group operations one A, h(X), the height
of X, and a constant cNT bounding the difference between the canonical height ĥ and
the naïve height coming from a fixed projective embedding of A. As an explicit formula
we may take c3 = c1(n+ 1)(dimX)3 max{h(X), h1, cNT, n log(n+ 1)}.

2.2. Points of small height

The methods we have discussed so far work well to describe intersections X ∩ Γ for
X ⊆ A a subvariety of an abelian variety and Γ ≤ A a finitely generated subgroup of A
since the kernel of the map from Γ to ΓR is the finite torsion subgroup of Γ so that,
in particular, there are only finitely many points of small height in Γ all told. When
considering Γ which is merely finite rank, it is a nontrivial problem to describe the
intersection of X with the set of small points in Γ.

The first instance of this problem is the Manin–Mumford conjecture which we for-
mulate for higher dimensional varieties even though as originally posed by Manin and
Mumford only curves were implicated.

Theorem 2.6. — Let A be an abelian variety defined over an algebraically closed
field K of characteristic zero. Let Γ ≤ A(K) be a rank zero subgroup. Let X ⊆ A be an
algebraic subvariety. Then X ∩ Γ is a finite union of cosets of subgroups of A.

Hindry (1988) shows how to deduce the Mordell–Lang conjecture for finite rank
groups formally from the case of finitely generated groups by using Theorem 2.6.

The original proof of Theorem 2.6 by Raynaud (1983) is p-adic in nature. Some
earlier results in the context where A is replaced by a power of the multiplicative group
were already known and many other proofs of the Manin–Mumford conjecture have
been published over the years. The literature on the Manin–Mumford conjecture is so
voluminous that we prefer to omit most of the references to its other proofs. However,
there are two approaches that are relevant to the new the uniform theorems we are
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studying. First, the proof of Pila and Zannier (2008) introduces the o-minimal point
counting method to diophantine geometry. This technique is implicit in the proofs
of the Ax–Schanuel theorems we discuss in Section 3.3. Secondly, and more directly,
the approach of Zhang (1998), which extends the case of curves considered by Ullmo
(1998) and which is based on the equidistribution theorems of Szpiro, Ullmo, and Zhang
(1997), is the one which is generalized and made more uniform in the newer work we
are expositing.

The Bogomolov conjecture as proven by Zhang (1998) takes the following form.

Theorem 2.7. — Let A be an abelian variety defined over a number field K and let
X ⊆ AKalg be an irreducible subvariety of A over the algebraic closure of K. We suppose
that X is not a translate by a torsion point of an algebraic subgroup of A. Then there is a
number ϵ > 0 for which the set of points of small height on X, {a ∈ X(Kalg) : ĥ(a) < ϵ},
is not Zariski dense in X.

Since the torsion points are those with canonical height zero, Theorem 2.6 may be
deduced from Theorem 2.7 by Noetherian induction on X.

The proof of Theorem 2.7 passes through an equistribution result proven using
Arakelov theory. To state the result we require some definitions. Let K be a num-
ber field and A an abelian variety defined over K. For an algebraic point a ∈ A(Kalg)
we write O(a) for the set of Galois conjugates of a over K. We say that a sequence of
points an ∈ A(Kalg) (for n ∈ N) is strict if for every proper subvariety Y ⊊ AKalg of
A over Kalg of the form Y = ξ + B for some torsion point ξ and algebraic subgroup
B < A the set {n ∈ N : an ∈ Y (Kalg)} is finite. We say that the sequence is small if
limn→∞ ĥ(an) = 0.

Theorem 2.8. — For every strict, small sequence (an)∞
n=0 of algebraic points in A(Kalg)

the Galois orbits O(an) are equidistributed with respect to the normalized Haar measure µ
on A(C). That is, for every continuous function f : A(C) → R we have

lim
n→∞

1
#O(an)

∑
a′∈O(an)

f(a′) =
∫
A(C)

f dµ .

An alternative proof of Theorem 2.7 was given by David and Philippon (1998) using
more classical methods of diophantine approximation. David and Philippon (2002)
follows up with a quantitative version of the Bogomolov conjecture.

We define a measure of the degree to which points of small height avoid proper
subvarieties of X as follows.

µ̂ess(X) := sup
Y

inf{ĥ(a) : a ∈ (X ∖ Y )(Kalg)}

Here, the supremum is taken over subvarieties Y ⊊ X of codimension one.
The Bogomolov conjecture asserts that when X is not a translate by a torsion point

of an abelian subvariety of A, then µ̂ess(X) is positive. David and Philippon (2002) show
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that µ̂ess(X) ≥ ĥ(X)
(dim(X)+1) deg(X) , which is strictly positive when X is not a translate of

an algebraic subgroup of A by a torsion point.

3. The Betti map and Betti form

While many of the techniques used to prove the new uniform versions of the Mordell–
Lang and Bogomolov conjectures mirror those appearing in earlier work, the analysis of
Betti maps gives these proofs a fundamentally new character. Interestingly, the Betti
maps themselves come from the classical approach of regarding a complex abelian variety
as a complex torus. The novelty derives on the one hand from o-minimal geometry
used to determine functional transcendence properties and on the other hand from a
comparison between complex algebraic geometry and differential geometry to employ
these maps to perform height computations.

Betti maps are explicitly introduced in Corvaja, Masser, and Zannier (2018) for the
purpose of studying torsion sections of abelian schemes. The authors attribute the
terminology to Bertrand and note that the construction is used implicitly in Voisin
(2018). Indeed, Bertrand, Masser, Pillay, and Zannier (2016) make use of the term
“Betti coordinates” for the first time. Without using the term, Masser and Zannier
(2014) employ Betti corrdinates for the study of torsion points in families. These Betti
maps underlie the construction of differential operators which have come to be known
as Manin maps from Manin (1963). Mok (1991) constructs the Betti forms (though
does not use this terminology) which serve as the differential geometric instantiations
of the Betti coordinates and are used to establish the new height inequalities.

3.1. Definition and first properties of Betti maps

Consider a complex torus X. That is, X is a complex Lie group expressible as
X = V/Λ where V = T0X is the tangent space of X at the identity and Λ = ker expX
is a lattice in V arising as the kernel of the Lie exponential map expX : V → X. Fix
a basis ω1, . . . , ω2g of Λ as a Z-module where g = dimCX is the dimension of X as a
complex manifold. For this basis we may define a real analytic isomorphism

X (R/Z)2gb

between X and the standard real torus (R/Z)2g via

a (b1(a) + Z, . . . , b2g(a) + Z)

where

a = expX(
2g∑
i=1

bi(a)ωi) .

This map bA gives a real analytic isomorphism between A(C) and the real
torus (R/Z)2g.
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Suppose now that S is a connected complex manifold and X → S is a family of
complex tori over S by which we mean that ρ : X → S is a map of complex manifolds
and we have a complex analytic map +: X ×S X → X over S giving each fiber the
structure of a complex torus. Let ϖ : S̃ → S be the universal cover of S. Then the
universal cover π : X̃ → X has form X̃ = S̃×Cg where g is the relative dimension of X
over S. These maps fit into a commutative diagram

X̃ X

S̃ S

ρ̃

π

ρ

ϖ

where for any fixed s ∈ S and lifting to s̃ ∈ ϖ−1{s}, the restriction of π to {s̃} × Cg

may be identified with expXs
: Cg → Xs.

Fixing a base point s0 ∈ S̃, and a choice of a basis ω0
1, . . . , ω

0
2g of ker(expXϖ(s0)

),
because S̃ is simply connected, there are complex analytic maps ωj : S̃ → Cg for
1 ≤ j ≤ 2g so that ωj(s0) = ω0

j (again for 1 ≤ j ≤ 2g) and for each s ∈ S̃ the sequence
ω1(s), . . . , ω2g(s) is a Z-basis of ker expXϖ(s)

. We define b̃ : X̃ → (R/Z)2g by the rule
that

(s,v) (b̃1(s,v) + Z, . . . , b̃2g(s,v) + Z)

just in case

v ≡
2g∑
j=1

b̃j(s,v)ωj(s) mod ΛXϖ(s) .

Even as a function on the universal cover X̃, b̃ depends on our choice of basis for
ker expXϖ(s0)

which gives an ambiguity by an action of GL2g(Z). More seriously, even
after fixing that basis, if we were to try to descend b̃ to a function b : X → (R/Z)2g we
would encounter monodromy. However, locally we may regard the Betti map as defined
on X.

More precisely, for any simply connected ∆ ⊆ S, setting X∆ := ρ−1∆, identifying X∆
with one of the components of π−1X∆ ⊆ X̃ and then restricting b̃ to that component,
we have b∆ : X∆ → (R/Z)2g. Fiberwise, b∆ is a real analytic isomorphism of Lie groups.
That is, for each s ∈ ∆ we have

Xs (R/Z)2g∼
b∆s

.

Moreover, combining b∆ with ρ we can trivialize X∆. That is, we have an isomorphism
of real analytic spaces:

X∆ (R/Z)2g × ∆∼
(b∆,ρ)

While b∆ is merely real analytic, its fibers are complex analytic. That is, for any
r ∈ (R/Z)2g the fiber b−1

∆ {r} ⊆ X∆ is a complex analytic subvariety of X∆.
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3.2. The Betti form

In this section when discussing moduli spaces for abelian varieties, to simplify the
presentation we will drop the reference to a polarization type, implicitly restricting to
the case of principally polarized abelian varieties. Fix a positive integer g ≥ 1. Write
the coordinates on R2g × hg = Rg × Rg × hg as (x, y, Z). We define R2g × hg ∼= Cg × hg
by (x, y, Z) 7→ (x + Zy, Z). We define ω̂univ to be the form 2(dx)⊺ ∧ dy regarded as a
2-form on Cg ×hg via the above change of coordinates. A short computation shows that
ω̂univ is a (1, 1)-form.

For any arithmetic group Γ ≤ Sp2g(Z), ω̂univ descends to a (1, 1)-form ωuniv = ωuniv
Γ

on A = (Z2g ⋊ Γ)\(Cg × hg). For any principally polarized abelian scheme A → S with
sufficient level structure, A → S fits into a pullback square

A A

S A

so that we may take ω to be the pullback of ωuniv along the map A → A. This form ω

is a Betti form for the abelian scheme A → S.
The construction of ω from the Betti coordinates may be conceptually clear, but other

presentations are better suited for computations. Indeed, if we write the coordinates on
Cg × hg as (w,Z), then

ω̂univ =
√

−1∂∂(2(Imw)⊺(ImZ)−1(Imw)) .

Expanding this expression, we obtain another formula.

ω̂univ =
√

−1(dZ(ImZ)−1 Im(w) − dw)⊺) ∧ (ImZ)−1(dZ(ImZ)−1 Im(w) − dw) .

The Betti form enjoys some favorable properties.

Proposition 3.1. — Let A → S be a principally polarized abelian scheme with appro-
priate level structure and let ω be a Betti form on A. Then

– ω is a closed, semi-positive, (1, 1)-form (where “semi-positive” means that the
associated Hermitian form is positive semi-definite),

– for every integer N we have [N ]∗ω = N2ω where [N ] : A → A is the multiplication
by N map, and

– if U ⊆ S(C) is a Euclidean open subset, X ⊆ A is an irreducible subvariety of
dimension d for which the smooth locus of X meets AU , then the restriction of ω∧d

to the smooth locus of X is nonzero if and only if there is a point x in the smooth
locus of XU at which the real-rank of the differential of the Betti map at x is 2d.

When the condition that the there is a smooth point on the variety X at which the
Betti map has full rank holds we say that X is nondegenerate.
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3.3. (Non)degenerate varieties and the Ax–Schanuel theorem

For a given family X → S of complex tori, the Betti map b : X → (R/Z)2g is only
well-defined locally, and even then this is only true up to an automorphism of the real
torus (R/Z)2g. However, for any point x ∈ X the rank rk dbx of the differential of the
Betti map is well-defined.

Definition 3.2. — For Y ⊆ X an irreducible complex analytic subvariety of X, we
say that Y is nondegenerate if there is a point x ∈ Y sm in the smooth locus of Y for
which rk dbx = dimR Y = 2 dimC(Y ). Otherwise, we say that Y is degenerate.

An extreme way in which Y ⊆ X might be degenerate would be for db to restrict to
the zero map on TY , the tangent bundle of Y . Equivalently, taking Ỹ ⊆ X̃ to be any
component of the preimage of Y in the universal covering space X̃ of X, there would
be some fixed element r ∈ (R/Z)2g for which Ỹ is contained in the graph of the map
S̃ → Cg given by s 7→ ∑2g

j=1 rjωj(s) where ω1, . . . , ω2g is the sequence of analytic maps
ωj : S̃ → Cg described in Subsection 3.1. For example, for any positive integer N , this
would happen if Y were taken to be a component of X[N ], the kernel of the fiberwise
multiplication by N map on X.

Other varieties on which the rank of the Betti map is zero may be constructed by
taking products. For example, start with complex torus A and any point a ∈ A. Let S
be any connected complex manifold and set X := A× S with the structural morphism
ρ : X → S being the projection to S. On the subvariety Y := {a} × S the Betti map
has rank zero.

When we assume further that X → S comes from the analytification of an algebraic
family of abelian varieties, then it follows from Manin’s Theorem of the Kernel that all
such examples can be constructed from these two. A full description of the degenerate
varieties is made possible by an Ax–Schanuel theorem for mixed Shimura varieties.

Schanuel proposed the following transcendence inequality involving complex numbers
and their exponentials.

Conjecture 3.3. — Let α1, . . . , αn ∈ C be complex numbers that are Q-linearly
independent. Then

tr. degQ Q(α1, . . . , αn, exp(α1), . . . , exp(αn)) ≥ n .

Conjecture 3.3 encapsulates some known results on transcendental number theory
including, for example, the Lindemann–Weierstrass theorem and the six-exponentials
theorem. However, even for small values of n, the conjecture remains widely open. For
example, the case of n = 2 with α1 = 1 and α2 =

√
−1π would imply the algebraic

independence of e and π.
Shortly after Conjecture 3.3 was proposed, Ax proved a functional version which we

write in a form mirroring Conjecture 3.3.



1226–16

Theorem 3.4. — Let ∆ ⊆ Cm be an open, connected domain complex m-space for
some natural number m. Write the variables on Cm as z1, . . . , zm. Let αj : ∆ → C be
holomorphic functions on ∆ for 1 ≤ j ≤ n. We presume that no nontrivial Q-linear
combination of the the αjs is constant. Then

tr. degC C(α1, . . . , αn, exp(α1), . . . , exp(αn)) ≥ n+ rk
(
∂αj
∂zi

)

where
(
∂αj

∂zi

)
is the Jacobian matrix of α = (α1, . . . , αn) : ∆ → Cn.

Theorem 3.4 has been generalized for other special functions including abelian ex-
ponentials, modular functions, and period mappings associated to variations of Hodge
structures. Theorem 3.4 itself played an important role in Zilber’s program on the logic
of the complex exponential function and set the stage for the Zilber–Pink conjecture.
A version for Klein’s j-function was proven in Pila (2011) using the o-minimal counting
theorem of Pila and Wilkie (2006) and then used as a crucial step for the proof of the
André-Oort conjecture for products of modular curves.

The strongest Ax–Schanuel theorems known to date are those for period mappings of
variations of mixed Hodge structures Chiu (2021) and Gao and Klingler (2021) and the
very general differential algebraic version of Blázquez Sanz, Casale, Freitag, and Nagloo
(2021) from which the geometric forms may be deduced. For the applications to the
Mordell–Lang and Bogomolov conjectures, we need only the Ax–Schanuel theorem for
the universal abelian scheme over moduli spaces, itself an instance of the Ax–Schanuel
theorem for mixed Shimura varieties of Kuga type due to Gao (2020). A crucial
component of the proof in this case of mixed Shimura variety is the Ax–Schanuel
theorem for pure Shimura varieties of Mok, Pila, and Tsimerman (2019).

Let us express Gao’s Ax–Schanuel theorem in the language of bi-algebraic varieties,
restricting to the case of the universal abelian variety. The covering space Cg × hg

naturally sits as an open subset of the complex points of an algebraic variety, namely
Ď := Gg

a × S, the product of the gth Cartesian power of the additive group with the
space of symmetric g × g matrices. We say that a subset of Cg × hg is algebraic if it
is an intersection of the form Y (C) ∩ (Cg × hg) for some algebraic subvariety Y ⊆ Ď.
We say that an irreducible subvariety Z ⊆ A is bi-algebraic if there is some component
of its preimage in Cg × hg which is algebraic. A general variety is bi-algebraic if all of
its components are. The class of bi-algebraic varieties is closed under intersection, so
that every subset X ⊆ A has a bi-algebraic closure Xbi-alg. Bi-algebraic varieties admit
other characterizations. For example, the bi-algebraic subvarieties of A are what are
called “varieties of Hodge type” in the literature. More generally, bi-algebraic varieties
admit coverings by homogeneous spaces for algebraic subgroups of G2g

a ⋊ Sp2g. Morally,
they should be components of group schemes over Hodge type varieties, but such a
proposed characterization would be incorrect due to the existence of what are called
“Ribet sections” as is observed by Bertrand, Masser, Pillay, and Zannier (2016).
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Theorem 3.5. — Let Z be an irreducible complex analytic subvariety of some open
subset of the graph of the analytic covering map expressing A as a quotient of Cg × hg
by an arithmetic group. Let Z be the image of Z in A. Then

dim ZZariski − dim Z ≥ dim(Zbi-alg) .

Ax–Schanuel theorems, especially Gao’s version, are instrumental in the character-
ization of degenerate varieties. Since sufficiently general Ax–Schanuel theorems were
not yet available for Gao and Habegger (2019), they directly characterized degenerate
subvarieties of abelian schemes over curves by proving an Ax–Schanuel-type theorem
using the o-minimal Pila–Wilkie counting method. In some ways, this preliminary result
is more satisfying than what is possible in general because the degenerate varieties have
a much cleaner form.

Consider now a curve S defined over a field k of characteristic zero and A → S

an abelian scheme over S. Let K be the algebraic closure of the function field k(S)
and let AK be the base change to this algebraic closure of the generic fiber of A → S.
Recall from Section 1.1 the K/k-trace of A. We say that an irreducible subvariety
X ⊆ A is special if X → S is dominant and XK is a finite union of varieties of the form
ρ(Y )+B+ ξ where Y ⊆ TrK/k(A) is a subvariety of the trace defined over k, B ≤ AK is
an abelian subvariety (or is the trivial group), and ξ is some point of AK . It is strongly
special if ξ may be taken to be a torsion point of AK . Gao and Habegger (2019) show
that the degenerate subvarieties are precisely the strongly special subvarieties.

In the more general case of abelian schemes over higher dimensional bases, Theo-
rem 3.5 can be used to show that nondegenerate varieties may be constructed from fiber
powers. For purposes of computing bounds on intersections with finite rank groups or
the sets of small height, it often suffices to work with these fiber powers. For studying
the relations between different points on the variety X it can be useful to consider a
certain image of these fiber powers coming from taking differences. Let us introduce
some notation so that we may state the nondegeneracy theorem in both cases.

We are given an irreducible quasiprojective variety S defined over Qalg, π : A → S

an abelian scheme over S, and X ⊆ A a subvariety. For a natural number m, we
write X [m] for the mth fiber power of X over S. We define Dm : A[m+1] → A[m] by
(P0, . . . , Pm) 7→ (P1 − P0, . . . , Pm − P0).

Proposition 3.6. — With the notation as above, if the generic fiber XQ(S) is a
nonempty absolutely irreducible subvariety of AQ(S) which generates AQ(S) and which
is not special , then there is a natural number m0 so that for all m ≥ m0 the fiber
power X [m] and the image Dm(X [m+1]) are nondegenerate subvarieties of A[m].
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4. Uniform height estimates

As we have seen, height inequalities for algebraic points on subvarieties of abelian
varieties strong enough to deduce explicit, effective forms of the Mordell–Lang conjecture
have been known for decades. The key to proving the new uniform versions of Mordell–
Lang is to improve those earlier estimates by removing the dependence on the heights
of the varieties and other related arithmetic parameters, or at the very least keeping
them under sufficient control to permit the desired conclusions.

While Dimitrov, Gao, and Habegger (2021) ultimately conclude with a uniform bound
on the number of large points in intersections of finite rank subgroups of abelian varieties
with curves, at the heart of that paper a fundamental height inequality for general non
degenerate subvarieties is proven. Let us set the context for the remainder of this
section.

Let S be a quasiprojective variety over Qalg and let π : A → S be an abelian scheme.
Fix an embedding S ⊆ Pm of S as locally closed subvariety of projective space and then
also fix a compatible embedding A ⊆ Pn × Pm. We assume that on the generic fiber
AQalg(S) the embedding AQalg(S) ↪→ Pn comes from sections of a symmetric line bundle.
We work with the height on A coming from this embedding which is a representative
of the height hO(1,1)|A given by the Weil height machine. Treating A as an algebraic
dynamical system with the map P 7→ [2]P we deduce a canonical height ĥ on A. Some
additional technical requirements are added in the original text, for example, that the
polarization is a principal polarization and that A → S is given with suitable level
structure so that the associated moduli problem is represented by a universal abelian
variety over a fine moduli space. With this set-up the height estimate of Dimitrov, Gao,
and Habegger (2021) reads as follows.

Theorem 4.1. — With the hypotheses as given above, if X ⊆ A is an irreducible,
nondegenerate variety for which X → S is dominant, then there are two positive con-
stants c1 and c2 and a Zariski dense, open set U ⊆ X so that for all P ∈ U(Qalg) we
have ĥ(P ) ≥ c1h(π(P )) − c2.

Theorem 4.1 has the flavor of the uniform Bogomolov conjecture in that when
h(π(P )) > c2/c1 the canonical height is bounded away from zero on U . One might
hope to complete a proof of the uniform Bogomolov conjecture (with this additional
hypothesis that h(π(P )) is large) by arguing by Noetherian induction looking next
at the components of X ∖ U until one ends with the translates by torsion points of
abelian varieties on which the canonical height will be zero. Such an approach does not
quite work in that those components may be degenerate without coming from those
height zero varieties. This issue is dealt with by considering fiber powers invoking
Proposition 3.6. The more serious issue concerns the moduli points of small height.

The proof of Theorem 4.1 passes through a weaker statement about height bounds
for our chosen naïve height.
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Proposition 4.2. — With the hypotheses as in Theorem 4.1, there is a constant c1 so
that for every natural number N which is a power of two there are a constant c2 = c2(N)
and a Zariski dense and open set UN ⊆ X so that for every P ∈ UN(Qalg) we have
h([N ]P ) ≥ c1N

2h(π(P )) − c2(N).

To go from Proposition 4.2 to Theorem 4.1 requires a good way to compare the naïve
height to the canonical height and then a trick which Masser calls “killing Zimmer
constants” in Appendix C of the book by Zannier (2012).

The comparison between the canonical height and naïve height is given by a theorem
of Silverman (1983): there is a constant c > 0 so that

|ĥ(P ) − h(P )| ≤ cmax{1, h(π(P ))} ≤ c(1 + h(π(P )))

as P ranges through A(Qalg).
As the argument based on Masser’s trick is short, we reproduce it here. Fix N a

power of two for which N2 ≥ 2c
c1

. We will take U = UN and use new constants c′
1 := c1

2
and c′

2 := c2(N)+c
N2 for the conclusion of Theorem 4.1 (in place of c1 and c2).

For P ∈ U(Qalg) we compute.

N2ĥ(P ) = ĥ([N ]P )
≥ N2h(P ) − c(1 + h(π([N ]P )))
= N2h(P ) − c(1 + h(π(P )))
≥ c1N

2h(π(P )) − c2(N) − c(1 + h(π(P )))

Thus,

ĥ(P ) ≥ (c1 − c

N2 )h(π(P )) − c2(N) + c0

N2 ≥ c′
1h(π(P )) − c′

2

Let us return to the argument for Proposition 4.2. The inequality is proven by relating
it to a statement about the bigness of certain associated line bundles. For a natural
number N we write XN for the Zariski closure in Pn×Pn×Pm of {(P, [N ]P, π(P )) : P ∈
X(Qalg)}. For P ∈ X(Qalg) we write P ′ = (P, [N ]P, π(P )). Let F := O(0, 1, 1)|XN

and
M := O(0, 0, 1)|XN

. Then h([N ](P )) = hF(P ′) and h(π(P )) = hM(P ′), or, perhaps we
should say, the functions on the left of each of these equalities represent the heights given
by the height machine. If we could find positive integers p and q for which Fp ⊗ M−qN2

were big, then on a Zariski dense and open subset of XN any representative of the
height hF⊗p⊗M⊗−qN2 would be bounded below. From the computation above, we see
that ph([N ]P ) − qN2h(π(P )) = hF⊗p⊗M⊗−qN2 (P ′) would be bounded below, say by c′

Taking c1 := q
p

and c2(N) to c′

p
we have the inequality of Proposition 4.2. Both of F

and M are numerically effective so that a numerical criterion due to Siu may be used
to check that F⊗p ⊗ M⊗−qN2 is big.

Siu’s criterion takes the following form.
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Theorem 4.3. — Let Y be a projective variety of dimension d and let D and E be two
numerically effective divisors on Y . If (D·d) > d(Dd−1 · E), then D − E is big.

Applying Theorem 4.3 to the problem at hand, taking d := dimX = dimXN we
need to check that (F ·d) > dc1(M⊗N2 · F ·(d−1)), which is dc1N

2(M · F ·(d−1)). This is
achieved by establishing a lower bound for (F ·d) and an upper bound for (M · F ·(d−1)).

We convert the problem into one estimating certain integrals. Let α be the pullback
of the Fubini–Study form on P(n+1)(m+1)−1 to Pn × Pm under the Segre embedding
and let ρ : Pn × Pn × Pm → Pn × Pm be the projection onto those coordinates. Then
(F ·d) =

∫
XN (C) ρ

∗α∧d. This is the integral we need to bound from below. The main idea
in this computation is to compare α to the Betti form ω (or, really, these forms times a
suitable compactly supported function) making use of the positivity of the Betti form
(due to X being nondegenerate) and its transformation rule [N ]∗ω = N2ω.

To find the lower bound, we restrict as follows. Fix a point P0 ∈ X at which the Betti
map has full rank. Let ∆ ⊆ S(C) be a relatively compact, contractible neighborhood
of π(P0) in S(C). Write A∆ for π−1∆. Fix a smooth bump function ϑ : S(C) → [0, 1]
with support contained in ∆ and ϑ(π(P0)) = 1. Set θ := ϑ ◦ π. Using the positivity
of α and the relative compactness of ∆ in S, we may find some constant C > 0 so
that CθαX − θωX ≥ 0. Let κ′ :=

∫
X(C)(θω)∧d, which is strictly positive because ω

(and, hence, θω) is semi-positive and ω|∧dX ̸= 0 at P0. One shows that the inequality
(F ·d) ≥

(
κ′

Cd

)
N2d holds for all N . (Remember that even though it is suppressed from

the notation, F depends on N .)
In the other direction, it is shown that there is a constant c so that for all powers

of two N one has (M · F ·(d−1)) ≤ cN2(d−1). The argument for this inequality passes
through algebraic intersection theory.

As an alternative to the proof we just outlined which is taken from the paper of
Dimitrov, Gao, and Habegger (2021), Theorem 6.2.2 of Yuan and Zhang (2021) gives
Theorem 4.1 for any polarized algebraic dynamical system.

5. Equidistribution and points of small height

Theorem 4.1 combined with the effective proof of the Mordell–Lang conjecture by Ré-
mond, 2000 on its own can be used to give a proof of a uniform version of the Mordell–
Lang conjecture in which we count only points of large height. To complete the argument
for uniform Mordell–Lang we require bounds for points of small height as well. This
is achieved through equidistribution theorems which can be seen as versions of the
theorems of Szpiro, Ullmo, and Zhang (1997) in families.

Kühne (2021) proves an equidistribution theorem for small points on subvarieties of
abelian schemes.
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Theorem 5.1. — Let S be an irreducible variety over a number field K, A → S an
abelian scheme over S equipped with a symmetric ample line bundle, and X ⊆ A an
irreducible, nondegenerate subvariety. We suppose that there is a sequence of algebraic
points (xn)∞

n=0 for which limn→∞ ĥ(xn) = 0 and for every proper subvariety Y ⊊ X

{n ∈ N : xn ∈ Y (Qalg)} is finite. (We call such a sequence a “small, generic sequence”.)
Then the canonical height of X is zero and there is a measure µ on X(C) so that every
small, generic sequence (an)∞

n=0 in X(Kalg) is equidistributed with respect to µ in the
sense that for any compactly supported continuous function f : X(C) → R we have

lim
n→∞

1
[K(an) : K]

∑
a′∈O(an)

f(a′) =
∫
X(C)

f dµ

In the statement of Theorem 5.1 we have fixed a single complex embedding K ↪→ C,
but the result is true for all of them. In fact, the theorem holds for nonarchimedian
places as well using the formalism of Chambert-Loir (2006).

The proof of Theorem 5.1 passes through yet another way to realize the Betti form
in terms of the equilibrium measure. As with the set up in Section 4 we have have
embedded S as locally closed subvariety of some Pm and then A into Pn × Pm so that
on the generic fiber this embedding comes from the sections of a very ample, symmetric
line bundle. We then take ι : A → P(n+1)(m+1)−1 to be the composition with the Segre
embedding. Let α be the Fubini–Study form on P(n+1)(m+1)−1 and for each natural
number k we let γk := (ι◦[2k])∗α

4k . It is shown that the Betti form is the limit of the γk
in the sense that for each irreducible subvariety Y ⊆ A and compactly supported
continuous function f : Y (C) → R one has

lim
k→∞

∫
Y (C)

fγ∧ dimY
k =

∫
Y (C)

fβ∧ dimY .

The proof of Theorem 5.1 shares some features with the proof of Theorem 4.1. For
example, a key lemma is based on a version of Siu’s criterion for bigness for hermitian
line bundles on arithmetic varieties due to Yuan (2021).

6. Deducing the uniform diophantine theorems

The uniform Bogomolov conjecture follows from Theorem 5.1.

Theorem 6.1. — Let S be an irreducible variety over a number field K, A → S an
abelian scheme over S equipped with a symmetric ample line bundle, and X ⊆ A an
irreducible subvariety. There are two positive constants c1 and c2 so that for every
s ∈ S(Qalg)

#{P ∈ X0
s (Qalg) : ĥ(P ) ≤ c1} ≤ c2 .

When X is nondegenerate, Theorem 5.1 implies that there is some ϵ > 0 and a proper
subvariety Y ⊊ X so that {P ∈ X(Qalg) : ĥ(P ) ≤ ϵ} ⊆ Y (Qalg). We could then apply
induction to Y to complete the argument. If X is degenerate because it is equal to its
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own Ueno locus, then we are also done. Otherwise, we can pass to the image under Dm

of some fiber power using Proposition 3.6 to make D(X [m+1]) nondegenerate for some
m > 1. We then note that the height bounds given by Theorem 5.1 imply similar height
bounds on X up to possibly m− 1 exceptions.

The proof of the uniform Mordell–Lang conjecture is deduced in stages. First, what
has been called the New Gap Principle is demonstrated.

Theorem 6.2. — There are constants c1 and c2 depending only on the dimension of the
abelian variety A polarized by the symmetric line bundle L and degree of the subvariety X,
both defined over Qalg, so that the set {P ∈ X0(Qalg) : ĥ(P ) ≤ c1 max{1, h(A)}} is
contained in a proper subvariety of X of degree at most c2.

The proof of Theorem 6.2 proceeds by first using Theorem 4.1 together with Proposi-
tion 3.6 and induction to show that there are positive constants a1, a2, and a3 depending
just on the degrees and dimensions mentioned in Theorem 6.2 so that the set

{P ∈ X0(Qalg) : ĥ(P ) ≤ a1 max{1, h(A) − a2}}

is contained in a proper subvariety of X degree at most a3. Likewise, Theorem 6.1 can
be used to produce positive constants b1 and b3 so that the set

{P ∈ X0(Qalg) : ĥ(P ) ≤ b1 max{1, h(A)}}

is contained in a proper subvariety of X degree at most b3. A simple computation then
shows that taking

c1 := min{ b1

max{1, 2a2
a1

}
,
a1

2 }

and
c2 := max{a3, b3}

works.
The deduction of the uniform Mordell–Lang conjecture from the New Gap Principle

uses the existing effective bounds of Theorem 2.5 of Rémond (2000). What prevents
an immediate application is that Rémond’s bounds depend on three height parameters:
the modular height of A (what we have been calling h(A)), the constant cNT bounding
the difference between the canonical height and naïve Weil height, and the height h1 of
the polynomials defining the group operations.

We have already discussed how to bound cNT using Silverman’s theorem. A bound
for h1 linear in h(A) is computed by observing that the coefficients of the group opera-
tions may be computed as rational functions of any Zariski dense set of points in A×A.
In particular, we may use the torsion points which have canonical height zero so that
using Silverman’s theorem again and the transformation rule for heights under rational
functions, h1 may be bounded in terms of h(A).

With these computations completed, Theorem 2.5 now gives a bound of the form cr+1

for the number of points in X0 on a finitely generated group Γ of rank r with height
greater than c1 max{1, h(A)} for appropriate constants c1 and c depending only on the
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dimension of the abelian variety A and the degree of X relative to our chosen ample,
symmetric line bundle on A. The New Gap Principle gives an absolute bound on the
number of points on X0 with height less than c2 max{1, h(A)}. If c2 ≥ c1, we would be
done, but that might be asking too much. Instead, a sphere packing argument is used
to produce a bound on the small points of a similar quality to the bound for the points
of large height so that together we obtain a uniform bound for the number of the points
in total.

While this argument works only for finitely generated groups, since the bound is
uniform and every finite rank group can be realized as direct limit of finitely generated
groups of the same rank, the bounds for finitely generated groups imply the same bounds
for finite rank groups.

The approach to the uniform Mordell–Lang conjecture we have outlined largely follows
the methods of Dimitrov, Gao, and Habegger (2021), Kühne (2021), and Gao, Ge, and
Kühne (2021). Yuan (2021) offers a different approach to the uniform Mordell–Lang
conjecture for curves. As we have noted on other occasions, Yuan’s method is based on
the Yuan and Zhang (2021) theory of adelic line bundles and presents some advantages
over the method we have exposited. For example, the method works in any characteristic
giving a new proof of the theorem of Hrushovski (1996). In particular, this method is
not dependent on Ax–Schanuel theorems to establish nondegeneracy.
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