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by Ana Caraiani

Introduction

The Langlands program is an intricate network of conjectures that touch on number
theory, representation theory, harmonic analysis, and even parts of theoretical physics.
At its heart lies the principle of reciprocity, or the Langlands correspondence, which can
be thought of as a bridge that connects different mathematical worlds.

There are several flavors of the Langlands program: global and local, arithmetic and
geometric. The arithmetic Langlands program takes place over (global) number fields,
such as the field of rational numbers Q, and over (local) p-adic fields, such as Q,, and
can be traced back to the work of Euler, Legendre and Gauss on the law of quadratic
reciprocity. A famous instance of the Langlands correspondence in the number field
setting, pioneered in Wiles (1995) and Taylor and Wiles (1995), is the modularity of
elliptic curves over Q. This was the cornerstone to Wiles’s celebrated proof of Fermat’s
last theorem.

There is a deep and fruitful analogy between the arithmetic of the integers, with
the special role played by prime numbers, and the geometry of algebraic curves, where
prime numbers are replaced by the points of the curve. The latter is the setting
of function fields, such as the field of meromorphic functions on a compact Riemann
surface or the field of rational functions F,(¢) on the projective line over [F,. A parallel
set of conjectures and results about the Langlands correspondence has developed in the
function field setting.

Note that, in the case of an algebraic curve, all the residue fields have the same
characteristic and we can form the product of the curve with itself to obtain a surface.
It is not clear how to do this with Z or even Z,,, or what to take the product over. These
properties lead to additional flexibility in the function field setting. This additional flexi-
bility was exploited over several decades in breakthrough results on the global Langlands

(W For example, this analogy inspired Weil to conjecture that the zeta functions of smooth projective
curves (and, more generally, of smooth projective varieties) defined over finite fields behave, in many
ways, like the Riemann zeta function. These became the celebrated Weil conjectures.
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correspondence for function fields of smooth projective curves defined over finite fields,
due to Drinfeld, L. Lafforgue and V. Lafforgue. In the setting of Riemann surfaces,
the Langlands correspondence was upgraded to a much richer categorical equivalence,
inspired in part by ideas coming from theoretical physics. A recent breakthrough in
this setting is the proof of the categorical unramified geometric Langlands conjecture
in Gaitsgory and Raskin (2024a), Arinkin, Beraldo, Campbell, et al. (2024), Campbell,
L. Chen, Faergeman, Gaitsgory, Lin, Raskin, and Rozenblyum (2024), Arinkin, Beraldo,
L. Chen, et al. (2024), and Gaitsgory and Raskin (2024D).

Traditionally, the arithmetic Langlands program has not been able to benefit from the
flexibility available in other, more geometric settings. With the discovery of the Fargues—
Fontaine curve and the development of p-adic geometry due to Scholze, this additional
flexibility became a tantalizing possibility, at least in the local setting of p-adic fields, as
foreseen in Scholze and Weinstein (2020) and Fargues (2025). In Fargues and Scholze
(2024), this promise was realized, with a transformative effect on the local Langlands
correspondence over p-adic fields and, more generally, on the Langlands program in the
arithmetic setting.

Fargues—Scholze laid the foundations of the geometric Langlands program over p-adic
fields, using the Fargues—Fontaine curve as a substitute for the algebraic curve featured in
the function field setting. More precisely, they defined, studied, and ultimately connected
geometric objects on each of the two sides of the local Langlands correspondence. On
the often more mysterious automorphic side, the key geometric object is Bung, the
moduli space of G-bundles on the Fargues—Fontaine curve. By introducing powerful
new techniques and structures from the function field setting, Fargues—Scholze gave a
completely general construction of semi-simple local Langlands parameters attached to
irreducible smooth representations of p-adic groups. They also formulated a geometric
version of the categorical local Langlands conjecture.

There are a number of excellent resources the reader can use to learn about the work of
Fargues—Scholze and subsequent developments. For example, the extensive introduction
to Fargues and Scholze (2024) gives an overview, as do the IHES lecture notes of Fargues
and Scholze (2022) and the survey article of Tmai (2024). The Eilenberg/Hausdorff
lectures of Fargues (2024) give a lot of examples and historical motivation and, in
particular, discuss the Jacobian criterion for smoothness in great detail. The Beijing
lecture notes of Hansen (2025) study the categorical local Langlands conjecture further
and discuss subsequent developments.

Because there are already so many resources available, this article is brief and relatively
less technical than these references. The goal is merely to introduce the reader to the
groundbreaking ideas of Fargues—Scholze, and to demonstrate how their ideas connected
different strands of research within the Langlands program and led to the solution of
long-standing problems. For simplicity, we focus below on the case of the geometrization
of the local Langlands correspondence over p-adic fields, even though Fargues—Scholze
also treat the case of local fields of equal characteristic.
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Organization

This article is structured as follows. In Section 1, we formulate the more classical
statement of the local Langlands correspondence. We discuss smooth representations of
p-adic groups, L-parameters, and the refined local Langlands conjecture that parame-
terizes the members of individual L-packets. This culminates in Conjecture 1.15, which
shows that the internal structure of L-packets already contains glimpses of a richer,
more geometric picture. Note that this section does not assume any knowledge of p-adic
geometry.

In Section 2, we discuss the Fargues—Fontaine curve in its many incarnations and the
moduli stack Bung of G-bundles on it. This culminates in Theorem 2.11, which exhibits
a certain category of sheaves D(Bung, A) as a geometrization of the derived category
D(G(FE),A) of smooth representations of the p-adic group G(FE). The constructions in
this section rely on p-adic geometry and on the formalism of condensed mathematics,
but we try to keep the discussion light on technical details and instead convey intuition.

In Section 3, we explain the main ideas in the work of Fargues—Scholze on the
geometrization of local Langlands correspondence and sketch their construction of semi-
simple local Langlands parameters. In particular, we emphasize the role of the geometric
Satake equivalence and the connection between excursion operators and the moduli stack
of Langlands parameters.

In Section 4, we aim to demonstrate the tremendous impact of the ideas introduced
by Fargues—Scholze by discussing in detail two applications of their work. The first
of these applications concerns the representation theory of p-adic groups, namely the
results of Dat, Helm, Kurinczuk, and Moss (2024a) on the finiteness of integral Hecke
algebras and Bernstein’s second adjointness. The second of these applications concerns
the cohomology of local and global Shimura varieties with both characteristic 0 and
torsion coefficients.

Notation

We let p and £ be distinct prime numbers. We let E/Q,, be a finite extension, with
ring of integers Op, uniformiser wg € O, and residue field F, of cardinality g.

We let G/E be a connected reductive group. The p-adic group G(F) is locally
profinite. For a closed subgroup H C G(F) and a smooth representation V' of H,
we denote by Indfl(E)V the smooth induction and by C—Indfl(E)V the smooth compact
induction of V.

We denote by 1 the trivial representation of an algebraic or p-adic group (the group
and the coefficients should be clear from context).

Fixing an algebraic closure E of E with residue field F,, denote by I'y := Gal(E/FE)
the absolute Galois group of F, equipped with its usual profinite topology. This group
sits in a short exact sequence

1l —Ig—Tg—Tf —1,
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where [g is the inertia subgroup and I'p, = Gal(F,/F,) is the absolute Galois group
of the residue field. The group I'r, is topologically generated by the arithmetic Frobe-
nius element o: x +— x? and this choice of topological generator makes it abstractly
isomorphic to Z, the profinite completion of Z.

The Weil group Wg of E is the dense subgroup of I'p defined as the preimage of
Z C Z. 1t is endowed with the topology that makes Ip, C W, with its induced topology
from I'g, into an open subgroup. We have the Artin reciprocity map of local class field
theory

Artg: EX 5 WP,
that we normalise such that uniformizers are sent to lifts of the geometric Frobenius
element. For w € W, we denote by |w| the absolute value of Arty'(w).

We let £ denote the p-adic completion of the maximal unramified extension of E.
The action of the arithmetic Frobenius o on F, lifts canonically to E.

We let Perfr, denote the slice category of perfectoid spaces in characteristic p over
* = Spd [F,. We make this into a site by equipping it with the v-topology. For an
[F,-algebra R, we let Wo, (R) denote its ramified Witt vectors, given explicitly by the
formula

Woy(R) = W(R) @wr,) Ok,

where W ( ) denotes the usual Witt vectors functor. Note that we could alternatively
define E as Wo,, (F,) []%] There is a unique multiplicative lift | |: R — W, (R) of the
identity morphism on R.

If S is a perfectoid space, a diamond, or, most generally, a small v-stack on Perfr,,
we denote by |S] its underlying topological space.

If X is a topological space, we write X for the v-sheaf that sends S € Perfy, to the

continuous functions C°(|S], X).
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1. The local Langlands correspondence

In this section, we discuss the local Langlands conjectures, gradually building up
to more and more general versions of these conjectures. The goal is not to write
down the most general form of the conjecture, but rather to exhibit some glimpses of
“geometrization” already in the statement of local Langlands. The following references
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provide a more in-depth treatment of this topic: Borel (1979), Kaletha (2016b), and
Taibi (2022).

The goal of the local Langlands correspondence is to describe the local constituents
of automorphic representations in terms of local Galois-theoretic or spectral data. We
start by describing the objects of interest on the automorphic side and then on the
spectral side. We then discuss the local Langlands conjectures for quasi-split groups
and, more generally, for extended pure inner forms of quasi-split groups. We highlight
how the general form of the local Langlands conjectures already contains some glimpses
of a richer, more geometric picture.

1.1. Smooth representations of p-adic groups

On the automorphic side, the objects of interest for the local Langlands correspon-
dence (at least a priori) are the irreducible smooth admissible representations of the
p-adic group G(FE) on C-vector spaces. The C-vector spaces for these representations
are typically infinite-dimensional vector spaces. We recall what smoothness and admis-
sibility mean, working, more generally, with coefficients in a Z[1/p|-algebra A.

DEFINITION 1.1. — A representation m of G(E) on a A-module V is smooth if, for
every v € V', the stabilizer of v,

Stab(v) == {g € G(E) | 7(g)v = v},

is an open subgroup of G(FE).

For any compact open subgroup K C G(FE), we define the space of invariants
™ ={veV|VkeK, n(k)v=nu}.

The compact open subgroups form a basis of neighbourhoods of identity in G(E). The
smoothness condition can be phrased equivalently by saying that we have

(1) T = colimg X,

where the colimit runs over compact open subgroups K C G(E). Yet another equivalent
formulation of smoothness is obtained by requiring the action map G(E) x V' — V to
be continuous when G(F) is endowed with its natural p-adic topology and V' is endowed
with the discrete topology. For any abstract isomorphism C = Q,, we obtain a bijection
from smooth representations G(E) on C-vector spaces to smooth representations of G(E)
on Q,-vector spaces, for any prime /.

A priori, the objects of interest for the local Langlands correspondence are irreducible
smooth representations of G(F). Because we equipped the underlying vector space with
the discrete topology, the notions of sub-representation, quotient, irreducible represen-
tation and so on are defined in the same way as for abstract group representations.
Omne can construct a large class of irreducible smooth representations of G(FE) induc-
tively, by taking subquotients of smooth parabolic inductions of representations of Levi
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subgroups of G. The building blocks are those representations that never arise as sub-
quotients of parabolic inductions, which are called supercuspidal representations and
which are more mysterious. For an introduction to the representation theory of p-adic
groups, see Renard (2010) and for recent advances in our understanding of supercuspidal
representations, see Fintzen (2023).

Later on, when we reach the geometrization of local Langlands, we will aim to un-
derstand all smooth representations of G(E) and the homomorphisms and (higher)
extensions between them. It is not hard to see that the category of smooth representa-
tions of G(FE) is abelian and has enough injectives and projectives. We will work with
its much larger derived category, which we denote by D(G(E), A).

We note that D(G(E), A) is compactly generated, with a set of compact generators
given by the compact inductions C—IndIG((E)Il, with K running over compact open pro-p
subgroups of G(E). The fact that this is a set of generators can be checked from the
equivalent definition of smoothness in (1) and from Frobenius reciprocity for compact
induction, which tells us that there are canonical isomorphisms

Homg(p) (C—Indi(E)]L,ﬁ) ~ Homp (1,7 |g) ~ 7.

The following finiteness condition plays an important role in understanding the struc-
ture of irreducible objects.

DEFINITION 1.2. — A smooth representation (7w, V') of G(E) is admissible if, for every
compact open subgroup K C G(E), the space of invariants & is finitely generated
over A.

Admissibility allows us to recover certain properties of finite-dimensional representations
in this infinite-dimensional setting, such as Schur’s lemma. Assume, for example that
A is an algebraically closed field of characteristic 0. Then, if V' is irreducible admissible,
any endomorphism 7' € Endg(g) (V') acts by a scalar.

A deeper result, maintaining the assumption on A, is that every irreducible smooth
representation is automatically admissible. This was originally proved by Jacquet, see
also Renard (2010, Theorem VI.2.2). The idea is to prove first that supercuspidal
representations are admissible. With characteristic 0 coefficients, any other irreducible
smooth representation can be realized as a sub-representation of a representation that
is parabolically induced from supercuspidal. One then verifies that admissibility is
preserved under parabolic induction using the Iwasawa decomposition.

1.2. L-parameters

On the spectral side of the local Langlands correspondence, the objects we are in-
terested in are called Langlands parameters or L-parameters. In order to define them
precisely, we first need to introduce the L-group of G, which in turn relies on the notion
of the Langlands dual group.

The Langlands dual group of a connected reductive group G/E is a split reductive
group G over C (or over @Q,), which is obtained as follows. We consider a root datum
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attached to G over an algebraic closure E of E and take the dual root datum, obtained
by interchanging the roles of characters and cocharacters, and the roles of roots and
coroots. This dual root datum determines the reductive group G we wanted. Several
examples of split groups and their Langlands dual groups are given in Figure 1.

G‘GLn SL, PGL, Spy, SOsni1 SOap
G|GL, PGL, SL, 8Os Spy  SOu

FIGURE 1. Examples of connected reductive groups and their Langlands dual groups.

The L-group of G is a variant of the Langlands dual group that remembers the
structure of G as a connected reductive group over E. More precisely, this structure
determines an action of the absolute Galois group 'y = Gal(E/E) on G by outer
automorphisms. This action factors through the Galois group of a finite extension of E.
For details on how this action is constructed and the choices involved, see Borel (1979,
§1). Recall that Wg C I'p denotes the Weil group of E. In these notes, we work with
the Weil form of the L-group:

LG =G x Wg.
When G is split over E, the semi-direct product above is simply a direct product and it
is harmless to ignore the Wg-factor. We also note that two connected reductive groups
over E that are inner forms of each other give rise to isomorphic L-groups.

Remark 1.3. — While this may seem an ad hoc construction, it turns out that the
L-group “G has a canonical description in terms of algebraic geometry, in the sense
that it arises naturally from the geometric Satake equivalence via Tannaka duality. The
geometric Satake equivalence is discussed more in §3.1.

We let A be an algebraically closed field of characteristic 0. We say that an element
of YG(A) = G(A) x Wy is semi-simple if it becomes semi-simple under projection to
G(A) x Gal(E'/E), where E'/E is some (equivalently, any) finite Galois extension that
splits G.

DEFINITION 1.4. — A (local) Langlands parameter or L-parameter is a homomorphism
@: Wi x SLy(A) — “G(A)
which satisfies the following properties:

1. The restriction @|w, is an L-homomorphism, i.e. it is a group homomorphism that
is a section of the projection *G(A) — Wp.

2. As a consequence of the first condition, we can write (¢|w,)(w) = (¢(w),w) for a
1-cocycle ¢: Wy — @(A) We ask that ¢ has open kernel — this is a continuity
condition for the discrete topology on the target.

3. The restriction o|w, sends all elements of Wy to semi-simple elements of “G(A).

4. The restriction ¢|si,a) s algebraic.
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We say that two Langlands parameters are equivalent if they are conjugate under @(A)

Remark 1.5. — Some authors impose an additional relevance condition in the definition
of a Langlands parameter for a connected reductive group G/E, which is only a non-
trivial assumption when G is not quasi-split over E. The relevance condition restricts the
image of ¢ in “G(A). More precisely, o should only factor through parabolic subgroups
of LG that are relevant for G, i.e. that correspond to parabolic subgroups of G defined
over F. See Taibi (2022, §4.3) for more details on how to relate parabolic subgroups
of G and parabolic subgroups of “G.

Remark 1.6. — Because of the second condition, the third condition is equivalent to
asking that (o, 1) be semi-simple, for some lift ¢ € W of the arithmetic Frobenius
in I'p,. This condition is called Frobenius semi-simplicity. When we discuss moduli
spaces of Langlands parameters in § 3.2, we will not impose the Frobenius semi-simplicity
condition because it does not behave well in families.

Definition 1.4 uses homomorphisms from the group Wg x SLy, which is a form of the
so-called Weil-Deligne group. We can consider another form, namely WDy = G, x Wg,
which is the one used in Borel (1979). In this case, one can define the notion of a
Weil-Deligne Langlands parameter. This is a pair (p, N), where

1. p: Wg — “G(A) is an L-homomorphism with open kernel,

2. N e Lie G satisfies p(w)Np(w)~* = |w|N for all w € Wpg, forcing N to be nilpotent,
and

3. p(w) is semi-simple for all w € Wg.

Once again, two Weil-Deligne Langlands parameters are said to be equivalent if they
are conjugate under G(A). If we choose a square root of ¢ in A, there is a natural map
from the set of Langlands parameters to the set of Weil-Deligne Langlands parameters,
given by
1/2 0
p = (pN) = (so <w7 (“’0 w—1/2>) 1 d(@lsian)) (5 é)) :

This map induces a bijection on equivalence classes by a refinement of the Jacobson—
Morozov theorem (Gross and Reeder, 2010, Proposition 2.2).

When A = Q, with ¢ # p, the notion of a Weil-Deligne Langlands parameter is useful
because Grothendieck’s ¢-adic monodromy theorem relates them to L-homomorphisms

(2) We = "G(Q))

that are continuous for the natural ¢-adic topology on G (Q,). These are closely related
to continuous f-adic representations of I'p, which occur in algebraic geometry, for
example from the étale cohomology of algebraic varieties defined over F. For this
reason, N is usually referred to as “the monodromy operator” — it encodes the action
of the pro-f-part of tame inertia.

The notion of Weil-Deligne Langlands parameter is furthermore useful for our pur-
poses because it motivates the definition of the semi-simplification of a Langlands
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parameter. Given a Langlands parameter ¢, we define the associated semi-simple
Langlands parameter to be ¢*: Wy — “G(A), where

) =)= (w, (0" 00 ))

From the point of view of the associated Weil-Deligne Langlands parameter, this
amounts to forgetting the monodromy operator N.

Remark 1.7. — We shall see in § 3 that Fargues—Scholze construct semi-simple Langlands
parameters ™ — ¢pg , Which are expected to be compatible with the L-parameters
predicted by the classical local Langlands correspondence 7 +— ¢, via ¢rs» >~ ¢5. This
compatibility is known in many cases when a classical local Langlands map has been
constructed.

1.3. The refined local Langlands conjectures

The local Langlands correspondence, in its most naive form, is meant to associate
Langlands parameters to irreducible smooth representations of G(E).

Let A be an algebraically closed field of characteristic 0 and fix a square root of ¢
in A. We denote the set of equivalence classes of irreducible smooth representations
of G(E) with A-coefficients by II(G(E)). We denote the set of equivalence classes of
L-parameters for G/FE with A-coefficients by ®(G).

CONJECTURE 1.8. — There exists a canonical local Langlands map
LLg: II(G(E)) — ®(G)
with finite fibers 11,(G) == LLg' (), which are called L-packets.

The word “canonical” in the statement of Conjecture 1.8 does not have a precise
mathematical meaning, as there is no completely general characterization of the local
Langlands correspondence. Nevertheless, it signifies that the map LLg should have a
number of nice properties: we should understand its image in terms of the relevance
condition of Remark 1.5, it should be compatible with the Satake isomorphism in the
unramified case, and with parabolic induction in general etc. For a precise statement
of the desired compatibilities, see Taibi (2022, Conjecture 6.1) and for a discussion of
the possible characterizations of the local Langlands correspondence, see Harris (2022).

Example 1.9. — When G = GL,,, the local Langlands map is known and gives a bijection
LLgr, : II(GL,) = ®(GL,).

Note that “G = GL, x Wpg, so that we can ignore the Wy-factor in the target in
Definition 1.4. The local Langlands correspondence for GL, over p-adic fields was
originally established by Harris and Taylor (2001) and Henniart (2000) with different
methods; it was later reproved by Scholze (2013).
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For more general groups G, including for example in the quasi-split case, the local
Langlands map LL¢ is far from a bijection. In general, an important question for the
local Langlands correspondence is how to describe L-packets systematically in terms of
the spectral side. Such a description comes up, for example, in the global automorphic
multiplicity formulae conjectured by Arthur and Kottwitz. The question of refining
Conjecture 1.8 has now been resolved, at least conjecturally, cf. Kaletha (2016a). Some
of the work involved in formulating a precise answer to this question has informed the
geometrization program of Fargues and Scholze (Fargues, 2025). At the same time, the
work of Fargues—Scholze shows that the answer fits into a much richer geometric and
categorical framework.

In order to give a flavor of how to describe L-packets systematically in the simplest
non-trivial case, assume that G/ F is a quasi-split group. This means that G contains a
Borel subgroup defined over E. We choose a Whittaker datum w = (B, ) for G. This
consists of a Borel subgroup B C G with Levi decomposition B =T x U (where T is a
maximal E-torus of G and U is the unipotent radical) and of a generic additive character

b U(E) = A.

The condition for the character 1) to be generic is that its stabilizer in T'(F) under the
usual adjoint action is Z(G)(FE). For example, we could obtain a generic character
by composing the character corresponding to the sum of positive roots with respect
to B with any non-trivial additive character £ — A. Once we have chosen a Whittaker
datum, we define a notion of genericity for irreducible smooth representations of G(E).

DEFINITION 1.10. — An idrreducible smooth representation © of G(E) with A-
coefficients is to-generic if the space

HOHIU(E)(W, ’QD) = HOHIG(E) (7?, Indgggido

is non-zero®.

Let ¢: Wg x SLy(A) — *G(A) be a Langlands parameter. We consider its centraliser
in G(A), defined as

S = {9 € G(A) | gpg™" = o}
This is a (possibly disconnected) reductive group that contains Z(G)'®. We set S, ==

~

S,/Z(G)"'E. The group of connected components 7y(S,) is a finite group and we denote

by Irr(my(S,)) the set of equivalence classes of its irreducible representations. We call
the parameter ¢ discrete if S, is itself finite.

We have a refinement of Conjecture 1.8 given by the following parameterization of
the L-packet IL,(G).

(2)By a result known as the uniqueness of Whittaker models, the space is at most one-dimensional.
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CONJECTURE 1.11. — 1. There is a canonical bijection

ot T (G(E)) 5 Trr(mo(S,))
that depends on the choice of Whittaker datum to.
2. If ¢ is discrete, there exists a unique generic constituent of I1,(G(E)). This
constituent gets mapped to the trivial representation of mo(S,) under ty.

When A = C, the bijection ¢, can be interpreted as a perfect pairing

(L ): T(G(E)) x mo(S,) = C.

which should satisfy certain endoscopic character identities. Furthermore, in this case,
the second part of Conjecture 1.11 is expected to hold under the weaker condition that
@ is tempered, which means that the image of ¢ projects onto a bounded subset of G (C).
The refined conjecture therefore motivates the notion of a generic representation, which
can be thought of as a base point of a tempered L-packet. A further motivation for the
notion of genericity comes from the perspective of global automorphic representations,
where it is related, under Arthur’s conjectures, to the generalised Ramanujan conjecture;
see Shahidi (2011). We shall see one final motivation when we formulate the categorical
local Langlands conjecture precisely in §3.4.

1.4. The Kottwitz set and local Langlands for extended pure inner forms

When the group G is not quasi-split, the refined version of local Langlands breaks
down. An influential idea to remedy this on the automorphic side has been to treat
all inner forms together. This idea originates from Vogan and was first exploited in
the work of Adams, Barbasch, and Vogan (1992) in the archimedean case. In the
non-archimedean case, the idea has gradually evolved from the use of so-called pure
inner forms of Vogan (1993), through extended pure inner forms (Kaletha, 2014), to
the completely general case that covers all inner forms (Kaletha, 2016a).

Each connected reductive group G/ E has a unique inner form G*/E that is quasi-split.
We choose this quasi-split inner form as our base point for stating the more general
version of the refined local Langlands conjectures, i.e. we set G = G*. We will not
describe the most general version of the local Langlands conjecture, but rather the
version that parameterises unions of L-packets IL,(G}), for all the extended pure inner
forms Gy of G. This is already very general, as we shall see below, and relates most
closely to the work of Fargues—Scholze.

In order to define the notion of an extended pure inner form, we start with some
recollections on the Kottwitz set B(G), first studied in Kottwitz (1985a.,b). The lift of
the gth power Frobenius ¢ acts on E and, therefore, on GG (E) We say that two elements
bl € G(E) are o-conjugate if gbo(g)~' =¥’ for some g € G(E); this is an equivalence
relation.

DEFINITION 1.12. — The Kottwitz set B(G) is the set of o-conjugacy classes in G(E).
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Alternatively, the set B(G) can be defined as the set of isomorphism classes of
isocrystals with G-structure. We define isocrystals with G-structure as follows. An
isocrystal over F is a pair (V, ¢), where V' is a finite-dimensional E-vector space and
¢V — V is a g-semi-linear automorphism. A morphism of isocrystals (V, ¢) — (V' ¢')
is a morphism of the underlying E-vector spaces that intertwines ¢ and ¢’. We let Isocg
denote the category of isocrystals over E. We let Repy(G) denote the exact symmetric
monoidal category of algebraic representations of G over E. An isocrystal with G-
structure is an exact ®-functor

Repy(G) — Isocg,

which is then automatically faithful. We denote by G —Isocg the category of isocrystals
with G-structure over E.

Given b € G(E) we define an associated isocrystal with G-structure as follows: to
each (V,p) € RepypG, we associate an isocrystal via (V ®p E, pb)(idy ® a)). One
can check that this defines an exact, faithful ®-functor Repy(G) — Isocy and that
the isomorphism class of the resulting isocrystal with G-structure depends only on the
o-conjugacy class of b. The fact that any isocrystal with G-structure is isomorphic to
one arising in this way from some b € G(E) follows from a theorem of Steinberg (1965)
on Galois cohomology, which implies that all G-torsors on Spec E are trivial.

The isocrystal perspective highlights, for each element b € G(E) lifting b € B(Q),
the algebraic group over E given by

G(R) ={g € G(R@p E) | gbo(g)~" = b},

which is the group of automorphisms of the isocrystal with G-structure parameterized
by b. For two different elements b, € G(E) in the same o-conjugacy class b € B(G),
there exists g € G(E) such that gbo(g)~' = ¥. Usual conjugation by ¢ induces
an isomorphism Gj = Gj and changing ¢ changes this isomorphism by an inner
automorphism. We therefore write GG, for the corresponding algebraic group. The
group G} turns out to be a connected reductive group which is an inner form of a Levi
subgroup of G. (Note that different elements b, € B(G) could determine twisted
Levi subgroups G, and Gy of G that are abstractly isomorphic — we will see this
phenomenon in Example 1.16.)

DEFINITION 1.13. — When Gy, is an inner form of G itself, we call the element

b € B(G) basic and we call Gy, an extended pure inner form. We denote the subset of
basic elements by B(G)pas C B(G).

The Kottwitz set can be understood using two invariants: the Newton map and the
Kottwitz map. While we will only use the restriction of the Kottwitz map to B(G)pas
in the formulation of Conjecture 1.15 below, the entire Kottwitz set plays a role in
the work of Fargues—Scholze. Therefore, we review these notions; see (Rapoport and
Richartz, 1996) for more details.
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Consider a maximal torus 7' C By C Gy and let X, (7)) denote its cocharacter lattice;
it has an action of the Weyl group W and of the absolute Galois group I'g. The Newton
map

(4) v: B(G) = (X (T)o/W)'™ = (X(T)§)"*

generalizes the Newton polygon attached to an isocrystal over E. Denote by m(G)
the algebraic fundamental group of G, defined as the quotient of X,(7") by the coroot
lattice. This is also equipped with an action of I'r and we denote the coinvariants by
71 (G)r,. The Kottwitz map has the form

(5) k: B(G) = m(G)ry.
Once v and k have been defined, one can prove that there is an injection
(v,k): B(G) — (X*(T)Q/W)FE X 71 (G)ry-

Therefore, the Kottwitz set is determined by these two invariants. After restricting
to the subset of basic elements, one can furthermore prove that there is a bijec-
: B(G)pas — m™1(G)ry. There is a canonical isomorphism v: 71(G)r, =~

tion K|p(G)..
X*(Z(G)"'7) and we will use the latter group in the formulation of Conjecture 1.15
below.

We can use the Newton and Kottwitz maps to define a partial order relation on B(G):
we set b < b if k(b) = k(V') and if v(b) < v(b') with respect to the dominance order on
cocharacters (after choosing dominant representatives). The basic elements are minimal
elements for this partial order relation. We equip B(G) with the order topology, which

is defined by the condition

{b}y e {V}iff b >0
This identifies the target of k with the set of connected components of B(G) and realizes
each basic element as the unique open element in its connected component.

Remark 1.14. — There are a natural partial order and a natural topology that can be
defined on the set B(G) coming from considering specializations of families of isocrystals
with G-structure. These are studied in Rapoport and Richartz (1996) and show up, for
example, when describing the closure relations among Newton strata in special fibers
of Shimura varieties. They also show up in the recent work of Zhu (2025) on the tame
categorical local Langlands conjecture. The partial order relation and topology we define
above are opposite to the ones coming from specializations of isocrystals; we shall see in
§ 2.2 that they model the specialization behaviour of G-bundles on the Fargues—Fontaine
curve instead. This phenomenon is explored further by Gleason, Ivanov, and Zillinger
(2025), who introduce certain objects, meromorphic G-bundles on the Fargues—Fontaine
curve, that mediate between the settings of Zhu and of Fargues—Scholze.

Before generalizing Conjecture 1.11, we need one more definition, namely we need to
rigidify the notion of an extended pure inner form. This gives a canonical identification
between the L-group of the extended pure inner form and the L-group of the quasi-split
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form G. An extended pure inner twist is a pair (b, ), where b € B(G)pas determines the
extended pure inner form G, and &: Gy Xg E 3G x B E is an inner twist determined
by a lift b € G (E) of the o-conjugacy class b. Any two extended pure inner twists (b, £)
and (b, ¢’) are isomorphic, and the set of automorphisms of a fixed extended pure inner
twist (b, &) is isomorphic to Gy(E), acting on itself by inner automorphisms.

Given two isomorphic extended pure inner twists (b,&) and (b,&’) determined by
bl e G(E), respectively, any isomorphism between them induces an isomorphism
Gj ~ Gy, defined over E and, therefore, a bijection between the sets of isomorphism
classes of irreducible smooth representations II(Gj(E)) ~ II(G(E)). This bijection
is independent of the choice of isomorphism (as inner automorphisms of G,(F) fix
isomorphism classes of representations), and therefore we can view the set of iso-
morphism classes of irreducible smooth representations of Gy(E) more canonically as
I, := 1&15 (G} (E)).

Maintain the choice of our Whittaker datum to for the quasi-split group G. Let Ger
denote the derived subgroup of G. For an L-parameter ¢: Wy X SLy(A) — LG(A), we
define the (possibly disconnected) reductive group S% := S,/(S, N Gaer)°. We denote
by Irr(SfO) the set of isomorphism classes of irreducible algebraic representations of SFP.
Conjecture 1.11 can be extended as follows.

CONJECTURE 1.15. — For any b € B(G)pas, there exists a canonical local Langlands
map

LLGJ)I I, — (I)(G)
with finite fibers I, = LL@}b(gp) and such that the following two properties hold.

1. There exists a commutative diagram

(6) LIy Iy ——=— Trr(S

| |

%)
B(G)bas & X*(Z(G)FE)v

where the horizontal maps are both bijections. The left vertical map is the natural
projection and the right vertical map is the restriction of representations along the
natural map Z(G)'e — SE.

2. The map uy restricted to the neutral component, i.e. taking b = 1) in (6) re-
covers the map denoted 1y, in Conjecture 1.11. In particular, if ¢ is discrete, the
unique t-generic representation in the L-packet I1,(G) gets mapped to the trivial
representation of Sﬂ,.

(3)Strictly speaking, if we set b = 1, we obtain the restriction of ¢y to the subset I, 1 of II;, which
was defined as a limit over all extended pure inner twists above 1 € B(G). In order to identify II, ;
with II,(G(FE)) C II(G(E)) as in Conjecture 1.11, we should further rigidify the situation by taking
the extended pure inner twist b = 1 € G(E).
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FExample 1.16. — We make Conjecture 1.15 explicit in the case when G = GL,,. First, we
note that the Dieudonné-—Manin classification completely describes Isocg: the category
of isocrystals is semi-simple and the simple objects V) are determined by rational
numbers A € Q, called slopes. Indeed, writing A = 2 for rational numbers s,r with
(s,r) =1 and r > 0, we can define the isocrystal

o= (e, )

where all the non-zero entries are 1 except for the bottom left one, which is equal to wf,.
A general isocrystal is isomorphic to
V=g
AEQ

and the basic elements are the same as the isoclinic elements, i.e. the ones with a single
slope A. The extended pure inner forms of GL, have the form GL,, (D) for some
ny € Zxy, where Dy is the division algebra with invariant A € 1Z/Z C Q/Z. One can
see that these cover all inner forms of GL,,.

On the RHS of diagram (6), when ¢ is discrete, we have S, = S% = Z()'e =Gy,
and the vertical map is the identity on Z. The Newton map is injective (this is a
consequence of Hilbert’s theorem 90), so the subset of basic elements can be identified
with the corresponding subset of slopes. We have B(GL,,)pas = %Z and the Kottwitz
map B(G)pas = X*(Z(G)'E) = Z is given by A — X-n. Bach extended pure inner form
shows up infinitely many times on the LHS of diagram (6), as the isomorphism class of
the extended pure inner form only depends on the image \ € %Z/ 7. Each individual
L-packet has size 1.

Remark 1.17. — Assume that A = Q,. We explain, heuristically, some glimpses of
geometrization that already show up in the statement of Conjecture 1.15. On the
spectral side, we have the following phenomenon. Assume that we can make sense of a
moduli stack of Langlands parameters. Assume also that G is semi-simple and that ¢
is discrete, so that S, = Sﬂ,. The substack corresponding to ¢ in this moduli stack is
open and looks like [*/S,]. The elements of Irr(S,), occurring in the top right corner
of diagram (6) give rise to coherent sheaves on this substack.

On the automorphic side, we shall see in §2 that each element b € B(G) gives
rise to a point on the stack Bung of G-bundles on the Fargues—Fontaine curve, with
corresponding group of automorphisms closely related to the p-adic group Gy(E). As a
result, Fargues—Scholze embed fully faithfully the entire derived category D(G(E), A) of
smooth representations of Gy(F) into an appropriate derived category of ¢-adic sheaves
on Bung. In particular, each element in the top left corner of diagram 6 gives rise to
an f-adic sheaf on Bung.

The moduli stack of Langlands parameters can be constructed rigorously, with several
different approaches due to Dat—-Helm—-Kurinczuk—Moss, Zhu and Fargues—Scholze. This
is discussed more in §3.2. The work of Fargues—Scholze upgrades the top arrow in (6)
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to a much richer conjectural equivalence of derived categories between f-adic sheaves on
Bung and so-called ind-coherent sheaves on the moduli stack of Langlands parameters.
This much richer conjecture is stated precisely in §3.4.

Remark 1.18. — In their geometrization of the local Langlands correspondence, Fargues—
Scholze work with the entire set B(G) rather than just with the subset of basic elements
B(G)pas- This raised the question of whether there is an extension of Conjecture 1.15 to
the entire set B(G). Such an extension was formulated in Bertoloni Meli and Oi (2023),
after the work of Fargues—Scholze was completed. In the parameterization of Bertoloni
Meli and Oi, the object in the top right corner of their version of diagram (6) is Irr(S,),
the set of equivalence classes of irreducible algebraic representations of S, itself, leading
to a cleaner formulation that is also compatible with the heuristic in Remark 1.17.(*

Remark 1.19. — Conjecture 1.15 captures all inner forms of G if Z(G) is connected. If
this condition does not hold, one can still formulate a more general version of Conjec-
ture 1.15 using Kaletha’s notion of rigid inner twists. In (Kaletha, 2018), it is shown
that knowing Conjecture 1.15 for all reductive groups over F is equivalent to knowing
this more general version of the local Langlands conjecture for all reductive groups
over F.

2. The Fargues—Fontaine curve and the stack Bung

The work of Fargues—Scholze lays the foundations of the geometric Langlands program
over the Fargues—Fontaine curve, as foreseen in Scholze and Weinstein (2020) and
Fargues (2025). The key geometric object on the automorphic side is Bung, the stack
of G-bundles on the Fargues—Fontaine curve over E. The goal of this section is to
introduce the Fargues—Fontaine curve in its different incarnations, to discuss G-bundles
on it, and to state some preliminary results that connect the geometry of Bung to the
representation theory of G(F) and its inner forms, as described in Section 1.4 and in
particular in Remark 1.17.

In the discussion below, we will assume knowledge of p-adic geometry as developed by
Scholze and his collaborators, particularly of the theory of perfectoid spaces, diamonds
and v-stacks. The original references for these topics are Scholze (2012), Scholze and
Weinstein (2020), and Scholze (2022). In addition, the reader can find an overview in
the Bourbaki talk of Fontaine (2013) and in the plenary ICM lecture of Scholze (2018),
and a number of surveys on different aspects of p-adic geometry in the book by Bhatt,
Caraiani, Kedlaya, and Weinstein (2019).

('More precisely, in this level of generality, one would see on the spectral side the classifying stack
for the centralizer of the Weil-Deligne form of the L-parameter, whose reductive quotient is S,. This
gives rise to the same set of equivalence classes of irreducible algebraic representations.
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2.1. The three incarnations of the Fargues—Fontaine curve

The Fargues—Fontaine curve is known as “the fundamental curve of p-adic Hodge
theory” because, in some sense, it geometrizes many of the period rings of p-adic Hodge
theory. It was introduced in Fargues and Fontaine (2018) as a geometric object defined
in terms of a local field, in our case the p-adic field F, and in terms of a perfectoid
field of characteristic p. With the introduction of the theories of perfectoid spaces and
diamonds, it became possible to consider this object in families, i.e. to construct relative
versions of the Fargues—Fontaine curve.

There are a number of excellent references on “the curve”, particularly in the case
over a perfectoid field, such as Fargues and Fontaine (2014) and Morrow (2019). Here,
we discuss briefly the more general version, in families. Let S = Spa(R, R') be an
affinoid perfectoid space in Perfg,. We let @w € R" be a pseudo-uniformiser (meaning,
a topologically nilpotent unit of R). We will construct three incarnations of the relative
Fargues—Fontaine curve parameterized by S: as an adic space, as a diamond, and as a
scheme. The constructions will glue to give versions of the relative Fargues—Fontaine
curve parameterized by general perfectoid spaces in Perfp,.

1. We first explain the construction of the Fargues—Fontaine curve as an adic space.
We first consider the adic space

Ys = Spa(Wo, (R")) \ V(wg - [@]),

where we have removed the vanishing locus V(wpg - [w]). This is an analytic adic
space over Spa(F, Og). One can check that the lift ¢ to We, (R) of the gth power
Frobenius on R™ acts freely and properly discontinuously on Ys and we can form
the quotient

Xs:=Ys/¢",

which is itself an analytic adic space over Spa(FE,Og). The space Xg is the adic
relative Farques—Fontaine curve over S. This is a particularly nice kind of adic
space, namely a sous-perfectoid space, in the sense that it becomes perfectoid after
base change from E to E, the p-adic completion of our fixed algebraic closure of E.
This construction is functorial in S. In particular, if z = Spa(K(z), K(x)*) — S
is a point, corresponding to a perfectoid field K (z), we have a natural morphism
Xspa(K(z),K()+) — Xs. Therefore, one can heuristically think of Xg as a family
of curves (XSP&(K(@’K(QJV))IHS indexed by the points of S. Note, however, that
there is no morphism of adic spaces Xg — S, as X lives over Spa(E, Og) and S
is a characteristic p perfectoid space.
2. Setting Spd F = Spa(FE, Og)®, the diamond incarnation of the relative Fargues—
Fontaine curve is given by

X~ (58° x Spd E) /(" x id).

More precisely, there is a natural isomorphism between the space Xg obtained
by applying the diamond functor to the adic incarnation Xg and the quotient
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(S° x Spd E) /(¢ x id). This follows from the natural isomorphism
Y§ ~ S° x Spd E,

which is established as a consequence of Fargues and Scholze (2024, Proposition
I1.1.2), using the functor-of-points perspective.

Indeed, set Vg = Spa(Wo,(R1))\ V([w]), an adic space over Spa Of with adic
generic fiber Yy. We claim that the functor-of-points of Vg can be described as
follows: for T' € Perfy,, we have

VY(T) = {T#, 7% 5 T, 7% — Spa Op, T — S}/ ~,

i.e. an untilt 7#, equipped with an isomorphism 7# 5 T, and with maps
T# — Spa Op and T — S. By the definition of the diamondification functor, for
any T' € Perfr, , we have

(Spd Op)(T) = {T#, 7% 3 T,T% — Spa Op} / ~.

One then concludes by using the universal property of the Witt vectors functor to
observe that a map 7% — Y, for any perfectoid space T# over Op, is equivalent,
when Rt is perfect, to a map T#” — S. As a consequence, we obtain a natural
isomorphism
Vi~ S° x Spd Op,

from which the desired isomorphisms follow by taking the adic generic fiber and
the quotient by ¢Z.

. We can use descent along the morphism Ys — Xg to construct vector bundles
on Xg. For example, consider the structure sheaf Oy, equipped with the descent

datum given by
1

;EQOI OYS :> OYS~
This gives rise to an ample line bundle Ox (1) on Xg. We define Ox,(n) =
Ox4(1)®™ and set
P = @ HO(XS, OXS(H))
n>0

We set Xglg = Proj P. This is the algebraic incarnation of the relative Fargues—
Fontaine curve. It is a scheme over Spec E. If S = Spa(C, C'"), for an algebraically
closed perfectoid field C' of characteristic p, then Xglg is a regular, Noetherian
scheme of Krull dimension 1, locally the spectrum of a principal ideal domain.
These properties are the reason that the Fargues—Fontaine curve is referred to as
a “curve”.

The scheme Xglg can alternatively be constructed without reference to the adic
or diamond versions, using instead a relative version of Fontaine’s period rings.

For example, if we denote by B ¢ the crystalline period ring Acys(R1)[L ], we

w ]
E

P~ P (Bls) 7"

crys,S
n>0
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This isomorphism is one instance of the general heuristic that the Fargues—Fontaine
curve geometrizes the period rings introduced by Fontaine in p-adic Hodge theory.

Remark 2.1. — The formula Y§ ~ 5° x Spd E is reminiscent of the formula S xgp, F,
Spa F,((t)) for the punctured open unit disc over S, which is the analogous object in the
local Langlands program in the function field setting. However, note that the product
S xr, Fy((t) already makes sense when working with usual algebraic geometry. See the
introduction of Scholze and Weinstein (2020) for more details on this analogy, which
inspired the development of diamonds in order to make sense of constructions such as
this one over p-adic fields.

Each of the three perspectives on the Fargues—Fontaine curve has its own advantages.
The diamond perspective allows us to glue the relative versions for affinoid perfectoid
spaces and construct adic space and diamond versions of the Fargues—Fontaine curve
X5 and X§ over general perfectoid spaces S € Perfg,. The gluing relies on the fact that
the construction is functorial in S and on the fact that there is a morphism on the level
of topological spaces

Y| >~ [Yg| ~[S° x Spd E| = [5],
because the underlying topological spaces of an analytic adic space and of its associated
diamond are naturally homeomorphic. In fact, this morphism factors over a morphism

(7) [ Xs| = [(S° x Spd B)/(¢" x id)| = |(S° x Spd E)/(id x ¢%)| — [S],

because the absolute Frobenius pg X ¢p acts trivially on the topological space |S¢ x
Spd E|. We warn the reader once more that the morphism (7) cannot be upgraded to
a morphism of adic spaces, or even to one of diamonds.

For S an affinoid perfectoid space in Perfg_, recall that we have

(Spd E)(S) = {S#,1: S# 5 3,5% — Spa E} / ~,

and the action of ¢ on it is given by ¢ — ¢g o ¢ (post-composition with the gth power
Frobenius on S). Fargues—Scholze consider the diamond

(8) Divg, = Spd E/¢"

over * := Spd F,; they show that it has nice geometric properties, e.g. that it is proper
and (-cohomologically smooth®. Given a map S — Div]}q, one can define an associated
closed Cartier divisor Dg C Xg that is locally given by an untilt Dg = S# — Xg,
well-defined up to Frobenius equivalence (i.e. up to post-composing the map ¢ by ¢g).

(®)This is a notion of smoothness for diamonds and (small) v-stacks introduced in Scholze (2022,
Definition 23.8) for any prime ¢ # p. See also Fargues and Scholze (2024, Proposition 1V.2.33) for an
equivalent characterisation. As v-stacks are defined in terms of the category Perfr, of characteristic p
perfectoid spaces, the usual definition of a smooth morphism from algebraic geometry, using Kéhler
differentials, does not make sense. Instead, one uses a definition with a more cohomological flavor,
where the key condition needed for a morphism f : X — Y to be f-cohomologically smooth is for Rf'F,
to define an invertible sheaf whose formation commutes with arbitrary base change.
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They define the notion of a closed Cartier divisor of degree 1 on Xg as consisting of a
closed Cartier divisor that arises from such a map S — Divllpq, identifying Divllpq with
the moduli space of such divisors.

FExample 2.2. — Let C' be an algebraically closed perfectoid field of characteristic p.
In this case, one can define the classical points of the Fargues—Fontaine curve via
| Xc|? = |Yo|?/p?. By Fargues and Scholze (2024, Definition / Proposition I1.1.22),
these classical points are in bijection with the Frobenius equivalence classes of untilts
C# of C' and, equivalently, with the closed Cartier divisors of degree 1 on X, i.e. with
the C-valued points of Divﬂl,q. Moreover, the bijection has the property that, if a classical
point corresponds to an untilt C#, this untilt is the residue field at that point. This
makes precise the idea that the Fargues—Fontaine curve should be a moduli space of
untilts, recovering an earlier result of Fargues—Fontaine.

We set Div' = Divlqu xr, Fq. For any finite set I, local systems on (Div')! turn out to
be naturally equivalent to continuous representations of I copies of the Weil group Wg
(Fargues and Scholze, 2024, Proposition VI1.9.2), so the diamonds (Div')! will play an
important role in the construction of L-parameters and in that of the spectral action.
This is discussed more in § 3.

Remark 2.3. — A smooth algebraic curve X over a perfect field S can be identified
with the moduli space of effective degree 1 Cartier divisors on X, by taking sections of
the structure morphism X — S. This identification is implicit in the local Langlands
programs in the function field setting. In the case of the Fargues—Fontaine curve, there
is no structure morphism, so we have to work with Div', often referred to as the mirror
curve. The mirror curve already played an important role in Fargues (2020b), where
Fargues studies the geometrization conjecture for GL1, i.e. the case of local class field
theory, using the moduli stack of line bundles on the Fargues—Fontaine curve.

The algebraic version of the Fargues—Fontaine curve is equipped, by construction,
with a natural morphism of locally ringed spaces

1
XS — ng.

This leads to a GAGA-style comparison result for vector bundles in the two settings,
originally established in Kedlaya and Liu (2015). They showed that pullback along the
morphism Xg — Xglg induces an equivalence of categories on the level of vector bundles.
The algebraic perspective is helpful in classifying line bundles on the Fargues—Fontaine
curve, and, ultimately, vector bundles, via a Beauville-Laszlo-style gluing result that is
established on the level of the algebraic curve.

The algebraic perspective is also helpful in constructing Hecke correspondences over
the moduli stack Bung of G-bundles on the Fargues—Fontaine curve, as in the dia-
gram (15), particularly the local Hecke stack denoted by Hck. This diagram plays an
important role in the geometrization of local Langlands and the local Hecke stack makes
the link with the representation theory of “G via the geometric Satake equivalence.
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2.2. G-bundles on the Fargues—Fontaine curve

Recall that, for a connected reductive group G/FE, we have defined the category
RepypG of finite-dimensional algebraic representations of G' over F. For a scheme X
over Spec E or for a sous-perfectoid adic space X over Spa(FE, Og), let Bun(X) denote
the category of vector bundles on X.

DEFINITION 2.4. —

1. A (Tannakian) G-bundle on X is an exact tensor functor
RepypG — Bun(X),

which is then automatically faithful.
2. A (cohomological) G-bundle on X is an étale sheaf Q on X equipped with a G-
action such that, étale locally on X, we have a G-equivariant isomorphism Q ~ G.
3. A (geometric) G-bundle on X is a scheme, resp. adic space, T — X, equipped with
a G-action, such that, étale locally on X, there is a G-equivariant isomorphism

T~X xd(.

By Scholze and Weinstein (2020, §9.5), all three of these notions give rise to equivalent
categories Bung(X) of G-bundles on X, both in the setting of schemes and in the setting
of sous-perfectoid adic spaces. The condition for X to be sous-perfectoid is imposed in
order to guarantee that the product X x G is also an adic space.

Example 2.5. — For G = GL,,, the isomorphism classes of GL,-bundles on X are in
bijection with the isomorphism classes of vector bundles of rank n on X, as follows.
Given a rank n vector bundle V on X, we can define the associated GL,-bundle using
the cohomological definition as the étale sheaf U +— £(U) = Isomy (V|v, OF). Given a
GL,-bundle £ on X, we take V to be the vector bundle corresponding to the standard
representation, using the Tannakian definition.

Let S € Perfg,. We apply Definition 2.4 to either X := X8 or to X = Xg. The
GAGA result of Kedlaya—Liu mentioned above implies that the notions are equivalent,
independently of whether we work with the schematic or with the adic incarnation of
the Fargues—Fontaine curve.

Recall that, in the definition of the Fargues—Fontaine curve as an adic space, we set
Xg = Ys/p?, where ¢ is the canonical lift of Frobenius to Ys. We have a natural, exact
®-functor Isocgy — Bun(Xg) that sends an isocrystal (V, ¢) over E to the vector bundle
E(V,¢) on Xg obtained by descent from the vector bundle V ®z Oy, by taking the
quotient under ¢ ® . This functor can be upgraded to a functor from the category of
isocrystals with G-structure over E to the category of G-bundles on Xg. In particular,
if b € B(G), we denote the associated constant G-bundle on Xg by &.

DEFINITION 2.6. — We define Bung to be the pre-stack that sends S € Perfr, to the
groupoid of G-bundles on Xg.
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Fargues—Scholze prove that this pre-stack is in fact a stack for the v-topology on Perfp,
and, moreover, that it is a so-called small v-stack(®). Therefore, we have a well-defined
underlying topological space |Bung|. The following result, known as the classification
of G-bundles on the Fargues—Fontaine curve, is a first step towards understanding the
geometry of Bung, as it describes the points of the topological space |Bung|.

THEOREM 2.7. — Let (C,CT) be a Huber pair where C' is an algebraically closed
perfectoid field of characteristic p. The functor

G — Isocg — Bung (XSpa(C,C+))
given by b — &, induces a bijection on the level of isomorphism classes of objects.

The classification result for vector bundles, i.e. the GL,, case of Theorem 2.7, was
proved first and has an intricate history. In the case of local fields of equal characteristic,
the vector bundle case of Theorem 2.7 was established in Hartl and Pink (2004). In the
case of p-adic fields, such as our chosen field £/Q,, this was originally proved in Kedlaya
(2004) and then given a more elegant proof in Fargues and Fontaine (2018). A proof of
the result for p-adic fields is also implicit in Colmez (2002).

The starting point for the proof of Fargues—Fontaine is to establish a version over
the curve Xgpa(c,c+) of the formalism developed in Harder and Narasimhan (1974) to
study vector bundles on a smooth projective curve over an algebraically closed field,
such as P{.. This leads to the notion of a semi-stable bundle of some slope A € Q and to
a proof that a general vector bundle admits a decreasing Q-filtration with semi-stable
graded pieces, called the Harder—Narasimhan filtration.

The category Isocg satisfies a Harder—Narasimhan formalism as well, as can be seen
from the Dieudonné—Manin classification. However, as the category Isocg is semi-simple,
Theorem 2.7 provides a strong constraint on vector bundles on the Fargues—Fontaine
curve. For example, it implies that the Harder—Narasimhan filtration on a general
vector bundle (still working over an algebraically closed perfectoid field) is split. To
prove their deep classification result, Fargues—Fontaine study modifications of vector
bundles associated to p-divisible groups using two period morphisms coming from p-
adic Hodge theory, namely the Hodge—Tate period morphism and the Hodge-de Rham
period morphism. A sketch of this original proof is given in Fargues and Fontaine (2014,
§6.3).

Fargues and Scholze (2024) give a new, more streamlined proof of the classification
result for vector bundles over the Fargues—Fontaine curve, which uses ideas introduced
in Colmez (2002) as well as the geometry of diamonds.

Granted the result for vector bundles, the extension of Theorem 2.7 to general G was
established in Fargues (2020a) over p-adic fields and subsequently in Anschiitz (2019)

(6)This roughly means a v-stack that admits a reasonable surjection from a perfectoid space, which
allows us to endow its set of points with a topology inherited from that of the perfectoid space. See
Definition 12.4 of Scholze (2022) for the precise definition and Proposition 12.7 of loc. cit. for the
construction of the underlying topological space.
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over both p-adic and equal characteristic local fields. The starting point in both these
references is to develop the Harder—Narasimhan formalism in the setting of G-bundles
on Xgpa(c,c+)-

Assume, from now on, that the connected reductive group G is quasi-split(”. Theo-
rem 2.7 determines a bijection

(9) |Bung| = B(G).

Recall that, in §1.4, we equipped the Kottwitz set B(G) with a topology using the
Newton and Kottwitz invariants. Fargues—Scholze prove that the bijection (9) is con-
tinuous. This amounts to showing that the (pullback to Bung of) the Newton map is
upper semi-continuous and that the (pullback to Bung of) the Kottwitz map is locally
constant. Furthemore, a result of Viehmann (2024) implies that the continuous map (9)
is open, hence a homeomorphism. This implies that the topology we defined on the
Kottwitz set B(G) reflects the specialization behaviour of G-bundles on the relative
Fargues—Fontaine curve, as promised.

The functor of Theorem 2.7 is far from an equivalence of categories®. Indeed, for
b € B(G), the group of automorphisms of the corresponding isocrystal with G-structure
is isomorphic to G(F). We define the v-sheaf of groups G, on Perfp ., by

(10) éb(S) = AU_tXS (&;)

Let p denote half the sum of simple roots in G. Fargues-Scholze prove that Gy admits
a semi-direct product decomposition

(11) Gy = Gs % Gy(E),

where G4(E) can be identified with the group of connected components 7,(G) and
where the identity component G} is /-cohomologically smooth of dimension (2p, v(b)).
In the special case when b is basic, we have an identification G}, ~ G,(F) (note that, in

this case, v(b) is central and (2p, v(b)) = 0.) In Example 2.8 below, we discuss what G},
can look like for a non-basic b.

2.3. The geometry of Bung and the category D(Bung, A)

Granted the classification result of Theorem 2.7, we define for each b € B(G), the
Newton stratum in Bung corresponding to it as the fiber product

Buan = Bung XBung| {10}

(D This is not such a restrictive assumption. If G is an extended pure inner form of its unique quasi-
split inner form G* (which is always the case if Z(G*) is connected), we can still understand the
geometry of Bung as follows. Assume that G is the extended pure inner form determined by some
b e G*(E) Fargues—Scholze show that there is a natural isomorphism Bung — Bung- that takes
the neutral point corresponding to geometrically fiberwise trivial G-bundles on Bung to the point on
Bung- corresponding to bundles that are geometrically fiberwise isomorphic to &.

(8 However, it does become an equivalence of categories when working with the “absolute Fargues—
Fontaine curve”, see Anschiitz (2023).
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This is a locally closed sub-stack of Bung and, in the special case when b is basic, it is an
open substack. Fargues—Scholze furthermore prove that we have a natural isomorphism

(12) Bun?, ~ [x/Gy],

which, in the special case when b is basic, identifies Buan with the classifying stack
[x/Gy(E)] of the p-adic group G,(F). The description in (12) will be key to relating
the representation theory of GG and its extended pure inner forms to objects of a more
geometric nature. Even when b is not basic, the connected component of identity G’Z is,
in some sense, (-adically contractible, which will allow us to realize the derived category

D(Gy(E), ) as a certain category of (-adic sheaves on the classifying stack [x/G}).

Ezample 2.8. — We give a sense for what Bung looks like in the case when G = GLy/E.
The Kottwitz invariant gives a decomposition into connected components

Bung = | | Bung.
a€Z
Specializing the discussion from Example 1.16 to n = 2, we have B(G)pas = %Z and the
extended pure inner form G, is isomorphic to GLs if b € Z and to D* otherwise, where
D is the unique quaternion algebra over E. Since the Kottwitz map can be identified

with multiplication by 2, the semi-stable locus in each connected component Bung, is
an open subset of the form [x/GLy(E)] if a € 2Z, or of the form [x/D*] if o € 2Z + 1.

Beyond the semi-stable locus, we see extensions of line bundles that are geometrically
fiberwise isomorphic to Ox (i) ® Ox,(j), with ¢ < j € Z satisfying i + j = «a. For
example, if b corresponds to Ox, @ Ox, (1), we have

where BC(Ox,(1)) is a so-called relative Banach—Colmez space. The space BC(Ox,(1))
is closely related to the universal cover in the sense of Scholze and Weinstein (2013) of
the Lubin—Tate formal group for F, cf. Fargues and Scholze (2024, §11.2.1), and, there-
fore, it is representable by the perfectoid open unit disc Spd I, [#/7™]. In particular,
BC(Ox,(1)) is ¢-cohomologically smooth of dimension 1.

Remark 2.9. — Banach—Colmez spaces were first introduced in Colmez (2002). The
category of Banach—Colmez spaces turns out to be closely related to the category of
coherent sheaves on the Fargues—Fontaine curve. For this more modern perspective,
see Le Bras (2018). In general, if b € B(G), the Harder-Narasimhan formalism implies
that ég is a successive extension of positive Banach—Colmez spaces, and this leads to
the f-cohomological smoothness result and to the dimension computation mentioned
above.

Fargues and Scholze (2024, § V) study the geometry of Bung further and prove that
it is an /-cohomologically smooth Artin v-stack of dimension 0. To establish this, they
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construct, for each b € B(G), a chart

(13) My, — Bung
[/ Gy(E)]

and prove that both maps ¢, and 7, are representable in locally spatial diamonds,
{-cohomologically smooth and partially proper. The v-stack M, is defined moduli-
theoretically: it parameterises G-bundles £ equipped with an increasing Q-filtration®
whose associated graded is geometrically fiberwise isomorphic to the associated graded
of the constant G-bundle &,, equipped with its Harder—Narasimhan filtration. The
map ¢, is going to the associated graded and the map 7, forgets the filtration. The
image of M, in Bung is open and is equal to the set of generalizations of b.

The map ¢, can be described explicitly in terms of negative Banach—Colmez spaces, so
the desired geometric properties are established relatively painlessly, see Example 2.10
for the flavor of the argument. On the other hand, proving the ¢-cohomological smooth-
ness of the map 7, in (13) relies on one of the major technical innovations of the paper, as
¢-cohomological smoothness is a condition that is often difficult to check in practice. To
achieve this, Fargues—Scholze develop a general Jacobian criterion of smoothness (Far-
gues and Scholze, 2024, §IV). This new criterion is discussed extensively in Fargues
(2024).

Example 2.10. — We continue Example 2.8 here, to give some more intuition for the
geometry of Bung. Let by € B(G) correspond to rank 2 vector bundles that are
geometrically fiberwise isomorphic to Ox,®Ox,(1). This point has one generalization b,
in Bung, corresponding to the semi-stable bundle Ox,(3) of rank 2. (In other words,
Ox,(3) can degenerate to Oxy @ Ox,(1).) The v-stack M,, parameterizes short exact
sequences

0=+L—=E—L —0,

where £ is geometrically fiberwise isomorphic to Ox, and L' is geometrically fiberwise
isomorphic to Ox(1). Fixing such isomorphisms leads to a Cartesian diagram

(14) My, ——— M,
qu
*« ——— [%/E* x EX]

where M,, parameterizes extensions of Ox,(1) by Ox, and is thus isomorphic to
the negative Banach-Colmez space BC(Ox4(—1)[1]). In this example, one can also
understand the individual fibers over b, and b,, see Fargues and Scholze (2024, Example
V.3.1).

9)The Harder-Narasimhan filtration decreases with the slope, so this is the opposite condition.
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We now discuss the category of ¢-adic sheaves on Bung considered by Fargues—Scholze.
Let A be a Zs-algebra. The desired category should have the property that its restriction
to Bun% recovers the derived category of smooth representations D(Gy(E), A) under
the the isomorphism (12) and the decomposition (11). If A is {-power torsion, one
can consider the category D(Bung, A) defined in Scholze (2022). If A = Q,, the usual
procedure for passing from torsion coefficients to Q,-coefficients via completion would
give rise to the wrong category of representations of G(E). Instead, Fargues—Scholze
use the theory of solid modules developed in Clausen and Scholze (2025+) to define
D(Bung, A) in general and to prove the following result.

THEOREM 2.11. —

1. The Newton stratification on Bung induces, via excision triangles, an infinite semi-
orthogonal decomposition of D(Bung, A) in terms of the categories D(Bun%, A) for
be B(G).

2. For each b € B(G), the isomorphism (12) and the decomposition (11) induce a
morphism

Bun, ~ [x/Gy] = [*/Gy(E)].

Pullback along this morphism induces an equivalence

D([#/Gy(E)], A) = D(Bung, A),

and we have a further equivalence D([x/Gy(E)],A) ~ D(Gy(F),\) to the derived
category of smooth representations of Gy(E) on A-modules.

In light of Theorem 2.11, D(Bung, A) can be thought of as a geometrization of
the derived category of smooth representations D(G(E),A). Indeed, we have a fully
faithful embedding D(G(E), A) — D(Bung, A) coming from the open inclusion of the
neutral point corresponding to b = 1 into Bung. Fargues—Scholze geometrize further
notions from representation theory, such as admissible representations, smooth duality,
Bernstein—Zelevinsky duality etc. The notion of parabolic induction is geometrized via
the functor of geometric Eisenstein series, which is studied further in Hamann (2025Db)
and Hamann, Hansen, and Scholze (2024).

Furthermore, Fargues—Scholze prove that the category D(Bung, A) is compactly gen-
erated. The charts (13) (and the Jacobian criterion of smoothness, which was used in
understanding them) play, once again, a crucial role. These charts are used to construct
an explicit set of compact generators, which generalize the set of compact generators
{C—Indi(E)A} of D(G(E), ), as K runs over open pro-p-subgroups of G(E). Later on,
the existence of a set of compact generators is used in a critical way to prove the main
results of Fargues—Scholze, particularly in their construction of the spectral action.
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3. Connecting the automorphic side to the spectral side

The category D(Bung, A) lives on the automorphic side of the local Langlands con-
jecture. In order to connect this to the Galois, or spectral side, Fargues—Scholze were
inspired by developments from the global geometric Langlands program over C and
from the global Langlands program over function fields. Working with the Fargues—
Fontaine curve and with its mirror Div' = Spd E /%, Fargues—Scholze implement in
the setting of p-adic fields ideas and constructions due to Beilinson, Drinfeld, Gaitsgory,
L. Lafforgue, V. Lafforgue and others, and developed over several decades.

In particular, Fargues—Scholze attach semi-simple local Langlands parameters to
irreducible smooth representations of G(£) (and its extended pure inner forms G,(E))
using a method introduced by V. Lafforgue to construct semi-simple global Langlands
parameters in the function field setting (Lafforgue, 2018). See Stroh (2017) and Heinloth
(2018) for surveys of V. Lafforgue’s work.

We give a brief overview of the construction of semi-simple local Langlands parameters
due to Fargues—Scholze because it is a more concrete aspect of their work. The starting
point is to consider moduli stacks over Bung that parameterise modifications of G-
bundles on the relative Fargues—Fontaine curve and whose relative étale cohomology
also produces representations of the Weil group Wg. These are mixed-characteristic
analogues of the moduli spaces of local G-shtukas that were used to study the Langlands
conjectures in the function field setting. To make this more precise, let A be a Z[,/q]-
algebra and let I be a finite set. Fargues—Scholze construct a diagram of v-stacks of the
form

(15) Hek}, —q> Hekl,
Bung Bung x ( D1V (Div')!.

This diagram has the following moduli-theoretic interpretation:

— For S € Perfp_, a section S — (Div')! parameterizes a set of closed Cartier divisors
of Xg of degree 1 labelled by /. We denote by Dg C Xg the union of these divisors.

— The global Hecke stack Hekl, — (Div')! parameterizes in addition two G-bundles
(&1, &) on Xg together with an isomorphism

f& |XS\DS:> & |XS\DS

that is meromorphic along Dg('?). This latter piece of data is denoted by
(f: & --28&)

(19)The meromorphy condition is the following: for each representation in ReppG, the Tannakian
perspective induces an isomorphism of the corresponding vector bundles F; |Xs\Ds:> F2 |xg\Dg- This
should extend to a morphism F; — Fa(kDg) for some k > 0, where we have the natural inclusion of
vector bundles Fy — Fa(kDg) by allowing poles along Dg.
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and is called a meromorphic modification of G-bundles on Xg. The maps p; and p,
form a Hecke correspondence: they send a tuple (S — (Div')!, &, &, f) to &,
respectively to (&, S — (Div')?).

— The local Hecke stack Hckl — (Div')! also parameterizes a meromorphic modifi-
cation of G-bundles (f : & --» &), except that these G-bundles are only defined
on the completion of Xg along Dg. (We work locally on S to make sense of this
completion, via Frobenius equivalence classes of untilts S# — Xg of S.) There is
a natural restriction map ¢: Hekl, — Hcky,.

The L-group “G = G x Wy enters the picture (15) via the geometric Satake equivalence
and via the local Hecke stack. We briefly discuss the geometric Satake equivalence in
the setting of Fargues—Scholze in §3.1, but for now the upshot is the following. Let @
be the finite quotient of Wg through which the action of Wg on G factors. We will
use the semi-direct product G x @ instead of the L-group because it has a model as an
algebraic group over A. The geometric Satake equivalence tells us that each algebraic
representation V' € Rep A(é x Q) determines a certain kind of perverse sheaf Sy, the
so-called Satake sheaf, on the local Hecke stack Hck,. The diagram (15) allows us then
to define a Hecke operator Ty, ; via the formula

(16) Tvi: A po. (DAY ¢ Sy),

where ®" denotes a derived tensor product.

The Ty ; are a priori functors from D(Bung, A) to D(Bung x (Div')!, A). However,
using the formalism of condensed mathematics, the target can ultimately be identified
with the category D(Bung, A)PWE of (Wg) -equivariant objects in D(Bung, A)M). This
also relies on the identification between local systems of A-modules on (Div')! and con-
tinuous representations of (Wg)! on finite projective A-modules, a version of Drinfeld’s
lemma (Drinfeld, 1980, Theorem 1.2) in the setting of the mirror curve Div'.

The monoidal structure of the geometric Satake equivalence implies that the Hecke op-
erators Ty, ; commute and that, for two elements V, W € Rep A(C:Y x Q)!, the composition
Ty.10Tyw 1, when restricted to the diagonal copy of W, is naturally isomorphic to Ty gw -
Furthermore, the Hecke operators preserve the subcategory D(Bung, A)¥ C D(Bung, A)
of compact objects (Fargues and Scholze, 2024, Theorem 1X.2.2). The upshot is that
we can package the system of Hecke operators (T )y into an exact Rep,@Q’-linear
monoidal functor

(17) Tr: Rep, (G x Q) — Endy (D(Bung, A)*)2VE Vs Ty,

The Hecke functors T} are also functorial with respect to the finite sets I. Using
V. Lafforgue’s idea of excursion operators, this turns out to be the categorical structure
needed in order to construct L-parameters up to semi-simplification. More precisely,
we use the notion of an excursion datum: a tuple (I,V,a, B, (V:)ier), consisting of a

(DTo define the notion of W L-equivariant objects, one needs to upgrade D(Bung, A) to a condensed
oo-category, denoted by Djis(Bung, A) in Fargues and Scholze (2024, §9). The notation BWY refers
to the classifying stack of W.
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finite set I, a representation V' € Rep A(CATY x Q)L G-equivariant morphisms o : 1 — Via,
B:Vl|sg — 1, and elements ; € Wg for i € I. Here, the restriction V' |5 is to the
diagonal copy G C GI (é’ x Q)!. For any A € D(Bung, A), the functoriality of the T}
with respect to I induces an endomorphism of A via the composition

(18) A=Ti(A) S T (A) 25 74) B 1y(4) = A

This endomorphism is known as an excursion operator and its construction is explained
in detail in §3.3.

Set A = Q, and consider Schur-irreducible objects A € D(Bung, A), i.e. objects with
End(A) = A. For example, irreducible smooth representations of G(£) on A-modules
are admissible and, therefore, they give rise to Schur-irreducible objects in D(Bung, A).
Explicitly, by Theorem 2.11, such a representation 7 determines a sheaf on the neutral
point F, € D(Bung, A) and we consider its extension by zero to all of Bung. For any
Schur-irreducible object A, the endomorphism defined in (18) acts by a scalar. Fargues—
Scholze conclude by the following proposition, which is a version of Lafforgue (2018,
Proposition 11.7).

PROPOSITION 3.1. — For any Schur-irreducible object A € D(Bung, A), there exists a
unique (up to G(A)-conjugacy) semi-simple L-parameter pps a: Wg — G(A) x Wg such
that, for any excursion datum (I,V,c, B, (7i)ier), the corresponding excursion operator

A=Ti(A) S T(A) 25 74) B 1y(4) = A

acts via the scalar

)ier

A Gy rsaldier By

Excursion operators turn out to be closely related to regular functions on the quotient,
in the sense of geometric invariant theory, of the moduli stack of L-parameters up to
@(A)—conjugacy. This fact underlies the proof of Proposition 3.1 and, therefore, the
construction of semi-simple L-parameters. We discuss the moduli stack of L-parameters
in §3.2 and we explain the connection to excursion operators in §3.3. Furthermore,
we explain how the construction of semi-simple L-parameters can be deduced from the
existence of a morphism on the level of Bernstein centers, which can even be defined
integrally (under a technical assumption on /).

Remark 3.2. — Fargues—Scholze prove that their construction m — ¢pg » of semi-simple
L-parameters satisfies some of the desiderata of local Langlands conjectures. For exam-
ple, they establish compatibility with local class field theory in the case when G is a
torus and compatibility with parabolic induction in general.

They also show that, when G' = GL,,, their construction recovers the local Langlands
correspondence of Harris—Taylor and Henniart, up to semi-simplification, i.e. in the sense
of the formula (3) and Remark 1.7. This compatibility was extended to all inner forms of
GL,, by Hansen, Kaletha, and Weinstein (2022). The compatibility with more classical
approaches to Conjecture 1.8 is also known for GSp, and its inner forms (Hamann,
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2025a), for odd unitary groups (Bertoloni Meli, Hamann, and Nguyen, 2024) and in
a number of other special cases. These compatibility results are typically established
using global Shimura varieties and the trace formula.

Remark 3.3. — A version of V. Lafforgue’s method was also used in the work of
Genestier—Lafforgue on the local Langlands correspondence over function fields (Gen-
estier and Lafforgue, 2018) to construct semi-simple local Langlands parameters in that
setting. On the other hand, the method of Fargues—Scholze also works over local fields
of equal characteristic. The compatibility between these two constructions was proved
in Li-Huerta (2023).

Remark 3.4. — The result that the Hecke operators Ty, preserve the subcategory of
compact objects D(Bung, A)¥ C D(Bung, A) implies non-trivial finiteness results for
the cohomology of Rapoport—Zink spaces and, more generally, for the cohomology of
local Shimura varieties (Fargues and Scholze, 2024, §1X.3). This gives unconditional
proofs and refinements of results of Rapoport and Viehmann (2014, §6).

The system of Hecke functors (77); from (17) contains much more information than
just the construction of semi-simple L-parameters. This categorical structure allowed
Fargues—Scholze to construct the spectral action and to formulate the local Langlands
conjecture as an equivalence of categories, inspired by analogous developments in the
setting of the geometric Langlands program (Arinkin and Gaitsgory, 2015; Nadler and
Yun, 2019; Gaitsgory, Kazhdan, Rozenblyum, and Varshavsky, 2022). We discuss the
spectral action and the categorical local Langlands conjecture over p-adic fields in § 3.4.

3.1. The geometric Satake equivalence

In this subsection, we discuss the geometric Satake equivalence, with an emphasis
on what is new in the work of Fargues—Scholze compared to earlier approaches. An
excellent survey on the geometric Satake equivalence that pre-dates this work is Zhu
(2017Db).

Classically, the geometric Satake equivalence relates the representation theory of the
L-group “G to the geometry of the affine Grassmannian for the original group G. For
example, if G is a connected reductive group over C, Mirkovi¢ and Vilonen (2007),
building on Lusztig (1983), Ginzburg (1990), and Beilinson and Drinfeld (unpublished),
established a monoidal equivalence of categories between the category of algebraic
representations of the Langlands dual group G /Q, and the so-called Satake category,
i.e. the category of f-adic perverse sheaves on the affine Grassmannian Grg, which are
equivariant with respect to the action of the loop group LTG.

The monoidal structure on the Satake category is given by the convolution product
of sheaves. To establish the geometric Satake equivalence, one needs to know that
the Satake category is a Tannakian category and, in particular, that this convolution
product is commutative. This is achieved by comparing it to the another operation, the
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fusion product, which is defined via the so-called Beilinson—Drinfeld Grassmannian, a
generalization of the affine Grassmannian Grg.

In our mixed characteristic setting, i.e. for a connected reductive group G over a
p-adic field E, the geometric Satake equivalence was established in Zhu (2017a) with
Q,-coefficients, using a version of the affine Grassmannian defined via Witt vectors.
However, the analogue of the Beilinson-Drinfeld Grassmannian does not make sense in
Zhu’s setting. Instead, Zhu used the equal characteristic version of the geometric Satake
equivalence at a crucial point in his proof, to establish the commutativity constraint via
a combinatorial identity and without directly appealing to the fusion product. Zhu’s
result was later refined to work with Z;- and F,-coefficients by Yu (2022).

We consider the form of the L-group of G given by G Q. To construct the system
of functors (17); from (17), indexed by finite sets I, Fargues—Scholze need to relate the
representation theory of (@ x Q)! to the geometry of the local Hecke stack HckIG, a small
v-stack on Perfr, and, thus, an object of p-adic geometry. When I = {*} consists of one
element, the local Hecke stack ’Hckgk Vs the analogue in p-adic geometry of the stack
quotient [L*tG\Grg| and thus closely related to the Witt vector affine Grassmannian
considered by Zhu and Yu. When I has more than one element, the local Hecke stack
Hcké is closely related to the analogue of the Beilinson—Drinfeld Grassmannian, which
now makes sense as an object of p-adic geometry, via the constructions of Scholze and
Weinstein (2020). This additional flexibility of p-adic geometry allows Fargues—Scholze
to reprove the results of Zhu and Yu, but also to establish the additional functoriality
properties needed for the construction for the construction of semi-simple L-parameters
and of the spectral action.

However, working in the setting of p-adic geometry makes the definition of the Satake
category of sheaves on Hck]G more difficult. For example, it is more subtle to define
the perverse t-structure because there is not, in general, a good notion of perversity
in p-adic geometry. The problem is that there is not a well behaved notion for the
dimension of a point on an adic space. Instead, Fargues—Scholze define a notion of
relative perversity(!?) with respect to the morphism Hck’, — (Div')!. This amounts to
perversity in all the geometric fibers, where the dimension can be defined “by hand”.
To show that this notion of relative perversity is well-defined and well-behaved under
convolution, Fargues—Scholze prove a version of the hyperbolic localization theorem
of Braden (2003) in the setting of p-adic geometry.

Finally, one can define the Satake category Saté(A) as a certain category of perverse
sheaves on HCkIG that are, in addition, flat over A and universally locally acyclic with
respect to (Div')! (Fargues and Scholze, 2024, Definition VI.0.1). There is a monoidal
equivalence of categories between Sat’(A) and the category of representations Rep , (G x4
Q)! (Fargues and Scholze, 2024, Theorem VI.0.2). The proof of this latter result goes

(12)This construction led to the observation that there is a good notion of relative perversity in usual
algebraic geometry (Hansen and Scholze, 2023). This is shown to be equivalent to perversity in all the
geometric fibers, using the fact that nearby cycles preserve perversity.
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along similar general lines as the proof of Mirkovi¢ and Vilonen (2007), employing
the convolution and the fusion products, hyperbolic localization, and a Tannakian

reconstruction of the group scheme G with its Wg-action®®.

3.2. The moduli stack of local Langlands parameters

The content of Theorem 2.11 is that the category D(Bung, A) geometrizes the category
D(G(FE), A) of smooth representations of G(E). This takes place on the automorphic
side. In order to upgrade the local Langlands conjectures, for example Conjecture 1.15,
to an equivalence of categories, we need to define the counterpart of D(Bung, A) on
the spectral side. In this subsection, we briefly discuss the underlying geometric object,
namely the moduli stack of L-parameters.

There are several approaches to constructing such a moduli stack over Z,, due to Dat,
Helm, Kurinczuk, and Moss (2025), Zhu (2021), and Fargues and Scholze (2024). An
excellent recent survey on this subject is Dat (2022), which discusses the history of the
problem, motivates the definition of L-parameter used for the general moduli problem,
and compares the different approaches mentioned above.

In this discussion, we will follow the approach of Fargues—Scholze. In §1.2, we have
seen three possible definitions for the notion of an L-parameter valued in Q,, namely:

— an L-parameter ¢: Wy x SLy(Q,) — *G(Q,) as in Definition 1.4;

— a Frobenius semi-simple Weil-Deligne Langlands parameter (p,N), where
p: Wy — YG(Q,) is an L-homomorphism with open kernel and N is the
monodromy operator;

— an (-adically continuous L-homomorphism ¢: Wz — “G(Q,), such that the asso-
ciated Weil-Deligne parameter is Frobenius semi-simple.

These notions give the same equivalence classes over @, (the first and the second
by the Jacobson-Morozov theorem, the second and the third by Grothendieck’s /-
adic monodromy theorem), but they do not give rise to the same moduli spaces. As
explained in Dat (2022), it is the third definition, without the Frobenius semi-simplicity
requirement, that gives the “correct” moduli space over Z, from the perspective of the
categorical Langlands conjecture.(!¥ However, when working with the third definition,
the problem is how to define the notion of continuity for an L-parameter valued in a
general Z,-algebra A.

To solve this problem, Fargues—Scholze use once again the formalism of condensed
mathematics. More precisely, let A be any Zs-algebra. This can be viewed as a condensed

(13)More precisely, the Wg-action on G that arises from Tannaka duality only agrees with the one in
the definition of the L-group “G up to an explicit cyclotomic twist, which can be trivialized if Va €A
(D7n fact, the third definition gives the only correct moduli stack over Z; already from the perspective
of the local Langlands correspondence in families of Emerton and Helm (2014). The second definition,
without the Frobenius semi-simplicity condition, does give the correct moduli stack over @Q,. More
recently, Scholze (2025, §4) constructed a canonical moduli stack over Z [ﬂ , using something closer in
spirit to the second definition.
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algebra that is relatively discrete over Z, via Agisc ®z, .. Z¢- Fargues—Scholze define the
notion of an L-parameter for G with coefficients in A as a section

w: Wg — @(A) x Wg

of the natural map @(A) X Wg — Wg of condensed groups. This is equivalent to the
datum of a condensed 1-cocycle

for the usual Wg-action on G. With this definition, we have the following result.

THEOREM 3.5. — There exists a scheme Z'(Wg, @) over Zy whose A-valued points are
the L-parameters for G with coefficients in A.

The scheme ZI(WE,G) is a union of open and closed subschemes Z*(Wg/P, @),
with P running over open subgroups of the wild inertia subgroup in Wy that are normal
in Wg. Each Z*(Wg/P, @) is a flat local complete intersection over Z, of dimension
dim G = dim G.

The representability of the moduli problem would be straightforward to prove if Wg
was a discrete and finitely generated group, by considering a system of generators of Wg.
The theorem is proved by reducing to this case, in two steps. Firstly, because the wild
inertia subgroup is pro-p, each L-parameter for G with coefficients in a Z,-algebra A
factors through some open subgroup P of the wild inertia subgroup that is a normal
subgroup of Wg. The moduli space of L-parameters for G breaks up as a disjoint
union of open and closed subspaces of L-parameters according to the kernel P of the
L-parameter restricted to the wild inertia. This reduces the problem to groups of the
form Wg/P.

The second step is to “discretize” the tame inertia, i.e. to replace Wg/P by the

discrete dense subgroup W C Wg/P given by the preimage of the subgroup TZ[%] x o

of the tame quotient of Wg, where o is a lift of the arithmetic Frobenius and 7 is a
topological generator of tame inertia. One checks that the discretization step gives
an equivalent moduli problem, by checking that any 1-cocycle W — G(A) extends
uniquely to a condensed 1-cocycle Wg/P — G (A). The nice geometric properties of
cach ZY(Wg/P,G) = ZY(W,G) are deduced from the relatively simple structure of the
tame quotient of W, which is only subject to the relation oro™t = 79,

Remark 3.6. — In the ¢ = p case, the action of the wild inertia subgroup on a p-
adic Galois representation can be highly non-trivial — there is no simple analogue of
Grothendieck’s f-adic monodromy theorem. Nevertheless, the analogous moduli stack
has been constructed in this case by Emerton and Gee (2023). In that setting, the
correct notion that interpolates well in families turns out to be a (¢, I')-module, a
notion coming from p-adic Hodge theory.
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The scheme Zl(WE,G) is equipped with a natural action of G coming from the
moduli problem. We define the moduli stack of Langlands parameters to be the stack
quotient Z1(Wg, CA?) / G. Using geometric invariant theory, Fargues—Scholze construct a
concrete bijection between the Q,-valued points of the associated coarse moduli space
Z'(Wg,G)//G (ie. the quotient taken in the category of schemes) and semi-simple
L-parameters p: Wg — é(@e) X Wg. Furthermore, they prove the following result
about the G-action on each Z'(Wy/P, Q).

THEOREM 3.7. — Assume that ¢ does not divide the order of the torsion subgroup
of m(G). Then H' (G,(’)(Zl(WE/P, G))) =0 fori > 0 and the formation of the ring
of invariants O(Z*(Wg/P, @))6 commutes with any base change.

We set Exc(W, Q) = colim, ;, ,wO(Z'(I,,G))%, where the colimit runs over all

n € Zs1 and over all maps from a free group I, onn generators to W C Wy/P.119) We
then have an isomorphism

(19) Exc(W,G) 5 O(Z(Wg/P,G))C.

Remark 3.8. — Even if £ does divide the order of the torsion subgroup of 7 (G), there
exists a morphism

Exc(W, &) — O(Z"(Wu/P,G))C,

which is a universal homeomorphism of finite type Zs-algebras and which becomes an
isomorphism after inverting ¢ (Fargues and Scholze, 2024, § VII1.3.2).

We define the spectral Bernstein center to be the algebra of regular functions on the
coarse moduli space of L-parameters for G:

(20) ZP(G, A) = O(Z (Wi, G),)C.
The second part of Theorem 3.7 can be thought of as a presentation of Z%(G, A) in
terms of an algebra generated by excursion operators. The reason for this interpretation

will be clarified in §3.3.

3.3. Excursion operators

In this subsection, we discuss excursion operators in more detail and we connect them
to the moduli stack of L-parameters discussed in the previous subsection.

We assume for simplicity that the group G is split over E, so that we only need to
consider the Langlands dual group G. We also assume, for now, that W is a discrete
group. We let C be a Z,-linear category and denote by End(id¢) the Bernstein center
of C. Assume that we have, for each finite set I, a monoidal functor

Tr: Repy, G' — End(C)PV',V s Try.

(15 Here, the action of I,, on G comes via the map I,, — W and the action of W on G. We can identify
ZY(I,,,G) with G™, with G-action given by simultaneous twisted conjugation.
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Assume also that the functors (77); satisfy an additional functoriality in /. This abstract
situation models the properties of the Hecke functors constructed by Fargues—Scholze,
including the additional functoriality in /. Using excursion operators, we will show that
this data induces a morphism of Z,-algebras

Exc(W,G) — End(ide).

We make the construction of excursion operators more explicit, using the original
perspective introduced in Lafforgue (2018). For any map (: I — J of finite sets, we
have a morphism of groups G’ — G! induced by restriction along (; explicitly, this
is given by (gj)jes — (9c@))icr- This induces a restriction morphism on the level of

representations Rep,, G' — RepZe@J that we denote by V + V<. The functoriality
condition in I implies(!9) that we have a system of isomorphisms

Xev: Try — Tyye,

indexed by maps ¢ : I — J of finite sets and by V € RepZeC:” , and satisfying the
following additional compatibilities:

— they are functorial in V;

— they are WY-equivariant, where the action of W* on the LHS is induced by
restriction along the diagonal morphism W/ — W;

— they are compatible with the composition of maps of finite sets.

Choose an excursion datum (I, V, «, 3, (7i)ier) with I non-empty and let ( : I — {x}
denote the unique map. The corresponding map on the level of groups is the diagonal
morphism A: G — G!. The corresponding excursion operator is the composition

. ~ Ty (@) ~
(21) ldc S T]l,{*} E— Tvg,{*} S TV,I

J("/i)ie[

ide < Th,{+ W)Tvg{*} < Tvy

This consists of three steps:

— a creation step induced by «, which creates I “legs”, i.e. closed Cartier divisors
of degree 1 on the Fargues—Fontaine curve, where the modifications of G-bundles
parameterized by I copies of the Hecke stack should be supported;

— the action of (7;);er, which moves the I legs independently;

— an annihilation step induced by S, which annihilates the I legs.

(16)The precise condition in Fargues and Scholze (2024) is that we view both (Repzzél)j and
(End(C)BWI> as coCartesian fibrations over the category of finite sets and the functors (T7); are

required to lift to the total space of these coCartesian fibrations. This condition is morally equivalent
to the explicit conditions on the isomorphisms (x¢,v)¢,v, but only if these explicit conditions are
understood to include all higher coherences.
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Using the properties of the system of functors (77);, one can prove that excursion
operators satisty certain important compatibilities, which make the link to the algebra
of regular functions O(Z1(W, G))€.

Indeed, we can view « as an element in VAG and £ as an element in (VV)A@),
where V'V denotes the Z,-dual of V. A first observation is that the excursion operator
only depends on (V,a, ) via the function f: G — Z, given by f((g:)) = (5, (g:)a).
Furthermore, the function f is invariant under the diagonal action of G on both the left
and the right. If we rewrite our non-empty finite set I as I U {x}, we can equivalently
define excursion operators in terms of elements of (’)[CA?I ]6, where the G-action is given
by simultaneous conjugation. In fact, we define a morphism of Z,~-modules

o' O[G"]® — Map (W', End(ide) ) -

These morphisms are functorial with respect to I and they can also be shown to respect
the algebra structures on both sides.

We now take the colimit over all finite sets I and over all group morphisms F'(I) — W,
where F'(I) is the free group on I generators, to obtain an algebra morphism

(22) Exc(W, &) = colimy p(wO[G1]¢ — End(ide).

In order to go from the system of the algebra morphisms (©7); to the algebra morphism
in (22), we need to verify that the (©7); satisfy an additional compatibility with respect
to group morphisms F'(I) — F(J) that do not arise from maps of the underlying sets.
The key point is to check compatibility with group morphisms that multiply subsets of
generators.

The colimit in (22) looks formally similar to the RHS of (19). In order to make the
simplified situation described above apply to the Weil group Wg, we want to let P run
over open subgroups of the wild inertia subgroup of Wx and let W be a discretization of
Wpg/P as in the (sketched) proof of Theorem 3.5. We can think of the group morphisms
F(I) — W as a way to “probe” the discrete group W by a free group on finitely
many generators; the colimit of F'(I) over all such morphisms recovers W (Zhu, 2021,
§2.1). Taking the colimit of O[G’ ]6 over all group morphisms F'(I) — W from a free,
finitely generated group should heuristically recover the algebra of regular functions on
the coarse moduli space of G-valued representations of W. Theorem 3.7 makes this
heuristic precise.

We upgrade D(Bung,A) to a condensed oo-category D(Bung,A), and we let
D(Bung, A)¥ € D(Bung, A) denote the stable condensed oo-subcategory of compact
objects. The category C is taken to be the full stable condensed oo-subcategory
Cp C D(Bung, A)* where all copies of P act trivially after applying any Hecke operator.
Fargues—Scholze show that every object of D(Bung, A)“ lies in some Cp. The functors
T; are taken to be the restrictions of the Hecke functors (17) to Cp.

We define the geometric Bernstein center as

(23) Z8M (G, A) = moEnd(idpBung a))-
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~

Assume that the order of the torsion subgroup of m1(G) (or, equivalently, the order of
m0(Z(@))) is invertible in A. The discussion of excursion operators from above, together
with the presentation of Theorem 3.7, leads to a morphism

(24) Z%eC(, A) — 250, A)

on the level of Bernstein centers (Fargues and Scholze, 2024, Theorem 1X.5.2). Note that
the passage to the subcategory D(Bung, A)* C D(Bung, A) of compact objects is essen-
tial for constructing this morphism, as is the statement that the category D(Bung, A)
is compactly generated.

Denote by Z(G(FE),A) the usual Bernstein center of the category of smooth repre-
sentations of G(E) (Bernstein, 1984). The fully faithful embedding D(G(E),A) —
D(Bung, A), which is a consequence of Theorem 2.11, induces a restriction morphism
Zeeom(G N) — Z(G(F),A). The composition of the morphism (24) with this restriction
morphism induces a morphism

(25) 259 (G A) — Z(G(E), A).

The construction of semi-simple L-parameters m +— @ps . is deduced from the mor-
phism (25) by specializing to the point of Z(G(E),Q,) corresponding to the irreducible
smooth representation .

When G = GL,,, the morphism (25) recovers a result of Helm and Moss (2018).

Remark 3.9. — For each prime ¢ # p, one obtains a morphism on the level of Bernstein
centers
(26) 274G, Qu(Va) = Z(G(E), Qu(vaq)) -

Both sides can already be defined over Q: indeed, one can define Z%*°(G, Q) using the
moduli stack of Langlands parameters of Dat, Helm, Kurinczuk, and Moss (2025), which
is already constructed over Z [%] Fargues—Scholze conjectured that each morphism (26)
arises from a unique morphism

2% (G,Q(vq) = 2 (G(E),Q(vq)) -

This conjecture, known as independence of ¢, was recently proved in Scholze (2025), by
redoing the constructions of Fargues—Scholze using motivic sheaves instead of f-adic
sheaves.

3.4. The spectral action and the categorical conjecture

In this subsection, we briefly discuss the construction of the spectral action and state
the geometric version of the categorical local Langlands conjecture. For an introduction
to the categorical Langlands program, including global and p-adic aspects, the reader
should consult Zhu (2021) and Emerton, Gee, and Hellmann (2022). For the state
of the art on the categorical equivalence conjecture stated below, the reader should
consult Hansen (2025).
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We continue to assume that G/FE is a quasi-split connected reductive group. We
also assume that A is either the ring of integers in a finite extension of Q,(/g), such
that ¢ does not divide the order of the torsion subgroup of 71 (G), or a finite extension
of Qg(\/a)

Maintaining the notation from the previous section, recall that, for each finite set I,
we have an exact, Rep, (Q7)-linear monoidal functor

Tr: RepA(C:Y x Q) — Endy (D(BUHGHA)W)BWJé .

These are, in addition, functorial in I. With higher categorical techniques, one can
repackage this system of functors into the so-called spectral action. We denote by
Perf(Z'(Wg, G)a/G) the stable co-category of perfect complexes on the moduli stack
Z'(Wg,G)a/G of L-parameters. Fargues and Scholze (2024, Theorem X.0.1) prove
that giving the system of functors (77); is equivalent to giving a compactly supported
A-linear action of Perf(Z'(Wg,G)a/G) on D(Bung, A)“. The condition that the action
be compactly supported is that, for any compact object, the action factors over some
Perf (21 (Wg/P,G)x/G).

This result works for an abstract small, idempotent-complete, A-linear stable oo-
category C in place of D(Bung, A)¥ and uses as an input the presentation of Theorem 3.7
and the higher category theory developed by Lurie (2017). A version of this result
with characteristic 0 coefficients appears in Nadler and Yun (2019) and in Gaitsgory,
Kazhdan, Rozenblyum, and Varshavsky (2022). However, obtaining the result with
integral coefficients is more subtle.

We explain how to recover the system of functors (77); from the spectral action. The

universal object parameterized by the moduli stack Z'(Wg, G)/G, with its universal
Wg-equivariance, defines an exact Rep,@-linear, symmetric monoidal functor

Rep, (G x Q) — Perf(ZY(Wg, G)a/G)EVE,

By taking tensor products, we obtain for each finite set I, an exact, Rep, (Q7)-linear
symmetric monoidal functor

Repy (G % Q) — Perf(Z'(Wg, G)y/G) PV,

This is now composed with the spectral action of Perf(Z'(Wg, G)s/G) on D(Bung, A)*
to obtain 17.

Example 3.10. — Assume that G is split over E and that I = {x} is a singleton. An
element V' € Rep A@ can be regarded as a vector bundle on the classifying stack of G
and this can be pulled back to a Wg-equivariant vector bundle V on Z'(Wg, G)a/G
under the natural map from Z'(Wg, G)s/G to the classifying stack. (The Wg-action
on V is induced from the Wg-action on the universal representation over Z'(Wg, G).)
The spectral action of V on D(Bung, A)* is given by applying the Hecke operator Ty, (,y
that corresponds to V under the geometric Satake equivalence.
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The spectral action connects our two main geometric objects: the moduli stack
Z'(Wg, G)/G on the spectral side and the stack Bung on the automorphic side. The
existence of the spectral action can be deduced if one assumes a geometric version of
the categorical local Langlands conjecture. However, the spectral action can also be
used to formulate the categorical local Langlands conjecture precisely.

To state the conjecture, we choose a Whittaker datum ro = (B,¢) for G (up to
G(E)- conjugacy) Writing B = T x U, we have the (co-)Whittaker representation
c- IndUE p¥- We denote by W, its extension by zero from the neutral point to all of
Bung, the Whittaker sheaf. Via the spectral action discussed above, the Whittaker
sheaf will rigidify the (conjectural) equivalence of categories.

Recall that Zl(WE, ) /G’ is not quasi-compact, as it is an increasing union of
substacks Z'(Wg/P,G)/G, where P runs over open subgroups of the wild iner-
tia in Wg. We denote by Perf®(Z'(Wg, G)a/G) the full stable co-subcategory of
Perf(Zl(WE,é)A/@) consisting of objects supported on finitely many connected
components of Z'(Wg, ) A/ G. There is an extension of the spectral action to the
ind-completion IndPerf®(Z (W, G)x/G) that preserves colimits. We denote the action
of M € IndPerf®(Z" (Wg, G)s/G) on W, by M % W, This induces a functor

(27) IndPerf®(ZY(Wg, G)a/G) — D(Bung, A), M — M W,
that preserves colimits.

CONJECTURE 3.11. — The right adjoint of the functor (27) restricts to a fully faithful
functor on D(Bung, A)“ and this induces a Perf(Z'(Wg, G)a/G)-linear equivalence of
stable co-categories

D(BunGv A)w = Df:)g}llc,Nilp(Zl(WE> CAy)/\/é)

With coefficients of characteristic 0 or banal characteristic!”), D>(ZY(Wg, G)A/G)
denotes the stable oo-category of bounded complexes of quasi-coherent sheaves on
ZY (W, @) A/ G, whose cohomology sheaves are coherent and have quasi-compact sup-
port. The condition Nilp is automatic in this case and can therefore be ignored. If the
coefficients are integral and the characteristic is not banal, the condition Nilp denotes
nilpotent singular support. This is a condition first introduced in the context of the

geometric Langlands program by Arinkin and Gaitsgory (2015).

Remark 3.12. — After taking ind-completions of the categories in Conjecture 3.11, the
categorical local Langlands equivalence should take the Whittaker sheaf W, to the

(") The banal characteristic assumption holds if £ > 0. On the automorphic side, a prime ¢ is banal
for G(E) if £ does not divide the pro-order of any compact open subgroup of G(E). This ensures that
there are no interesting congruences modulo ¢ between irreducible smooth representations of G(FE).
On the spectral side, one needs to impose a related, but in general stronger condition to guarantee
that the singularities of the moduli stack of Langlands parameters are not too bad. See Fargues and
Scholze (2024, Theorem VIII.2.11) and the discussion in Dat, Helm, Kurinczuk, and Moss (2025, §1.5)
on primes that are “G-banal.
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structure sheaf O of the moduli stack of L-parameters. This is related to

Z\(Wg,G)a/G
the requirement in Conjecture 1.15 that generic members of discrete (or, more generally,

tempered) L-packets IL,; correspond to the trivial representation of S,.

Remark 3.13. — A version of this conjecture, restricted to the neutral point of Bung,
was previously formulated by Hellmann (2023) and Zhu (2021) and Ben-Zvi, H. Chen,
Helm, and Nadler (2024). More precisely, consider the subcategory D¢, (G(E),A) C
D(G(FE),A) consisting of bounded complexes whose cohomology groups are finitely
generated smooth representations of G(E). The conjecture for the neutral point is that
there is a fully faithful embedding

D?g(G<E)7 A) — DS(’)%C,Nllp(Zl(WE’ é)/\/é)

This conjecture was proved with characteristic 0 coefficients in the case of the Iwahori
block (and deduced for all blocks for G = GL,,) by Ben-Zvi, H. Chen, Helm, and Nadler
(2024).

Remark 3.14. — Zhu also formulated a variant of Conjecture 3.11 using Isocg on the
automorphic side, a moduli stack of isocrystals with G-structure, as a replacement for
Bung. This stays within the realm of usual algebraic geometry and has a more direct
relationship with Deligne-Lusztig theory. In the very recent preprint Zhu (2025), the
tame case of the Isocq variant of the conjecture is established under certain technical
assumptions.

4. Further directions and applications

The work of Fargues—Scholze has already had a transformative effect on the Langlands
program in the arithmetic setting. It has inspired applications to long-standing open
problems as well as the development of parallel geometrization programs for p-adic local
Langlands and real local Langlands. In the p-adic case, several related conjectures are
formulated in Emerton, Gee, and Hellmann (2022); for the real case, see Scholze (2024).

To illustrate the power of the ideas introduced by Fargues—Scholze, this section will
focus in-depth on two examples of applications. The first example is the striking result
of Dat, Helm, Kurinczuk, and Moss (2024a) on the finiteness of integral Hecke algebras of
p-adic groups. This has important representation-theoretic consequences, most notably
an integral version of Bernstein’s second adjointness that shows parabolic induction is
also a left adjoint functor. This topic is discussed in §4.1.

The second example is of a global nature and concerns the cohomology of Shimura
varieties. The work of Fargues—Scholze, together with the ideas introduced in Koshikawa
(2021b) and Hamann and Lee (2025) and with the construction of the Igusa stack
in Zhang (2023) and Daniels, Hoften, Kim, and Zhang (2024), have revolutionized the
study of Shimura varieties and their cohomology. This topic is discussed in §4.2.
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4.1. Finiteness of integral Hecke algebras

For any compact open subgroup K C G(E) and any ring A, the (not necessarily
commutative) algebra A|[K\G(E)/K]| ~ Endg(E)(c—Ind?((E)ll) is called a Hecke algebra.
The algebra structure is given by convolution of bi-K-invariant functions. For any
smooth representation 7 of G(FE) with A-coefficients, the space of its K-invariants

Homg (g (C—Inle((E)]l, 77) ~ gk

is naturally a right module over this Hecke algebra (by pre-composing with endomor-
phisms of c—Indg(E)]l). When 7 is finitely-generated and K is chosen small enough, the
Hecke module of K-invariants completely determines the representation m. Therefore,
studying Hecke algebras is highly relevant for understanding smooth representations of
G(FE). In particular, showing that the Hecke algebras A[K\G /K| have good finiteness
properties has important representation-theoretic consequences. Dat, Helm, Kurinczuk,
and Moss (2024a,b) prove the following result.

THEOREM 4.1. — For any noetherian 7, [ﬂ -algebra A, the Hecke algebra A|[K\G(E)/K]
is a finitely generated module over its center, which is a finitely generated (commutative)

A-algebra.

When A is an algebraically closed field of characteristic 0, Theorem 4.1 was proved
in Bernstein (1984). Prior to the work of Dat, Helm, Kurinczuk, and Moss (2024a), the
integral version of the theorem was only known in the case G = GL,, due to Helm (2016).
This proof relies on specific features of GL,,, such as the uniqueness of supercuspidal
support.

We explain the proof of Theorem 4.1, for simplicity, in the case when A is a noethe-
rian Zg-algebra for some prime ¢ # p. The theorem can be equivalently formulated
by requiring finitely generated smooth representations of G(F) to satisfy certain finite-
ness / admissibility properties with respect to the Bernstein center Z(G(E), A). This
equivalent formulation was then reduced to proving the finiteness of a map of excursion
algebras

(28) Exc(W,G) — Exc(W, M),

for M a Levi subgroup of G and W a discretization of some Wg/P. This reduction
uses in a crucial way the morphisms from the excursion algebra to the Bernstein center
constructed by Fargues—Scholze, but also Bernstein’s theorem in characteristic 0.

The finiteness of the morphism (28) could then be checked on the spectral side of the
local Langlands correspondence by proving the finiteness of the corresponding morphism
of moduli stacks of L-parameters. This works even when ¢ divides the order of the
torsion subgroup of 7?1(@). This is because the Fargues—Scholze morphism from the
excursion algebra to the Bernstein center factors through the reduced quotient of the
excursion algebra.

As a corollary of Theorem 4.1, Dat, Helm, Kurinczuk, and Moss establish an integral
version of Bernstein’s second adjointness theorem.
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COROLLARY 4.2. — For all Z [%]—algebms A and all pairs of opposite parabolic sub-
groups (P, P) in G with common Levi component M = P N P, the parabolic induction
functor

Ind3(5): Repi"(M(E)) — Repi™(G(E))

is left adjoint to the Jacquet functor for the opposite parabolic P, twisted by the modulus
character of P.

4.2. The Igusa stack and the p-adic geometry of Shimura varieties

(Global) Shimura varieties are algebraic varieties defined over number fields, which
play a central role in the arithmetic global Langlands program. In this subsection, we
explain how the work of Fargues—Scholze, together with the introduction of the Igusa
stack, led to elegant solutions to two problems in the area of Shimura varieties: a
long-standing one (Eichler—Shimura relations) and a more recent one, but with striking
applications (torsion vanishing).

A Shimura variety is determined by a Shimura datum (G, X), where G/Q is a con-
nected reductive group and X is a conjugacy class of homomorphisms Resc/rG,, — Gg
of algebraic groups over R. Both G and X are required to satisfy certain axioms (Deligne,
1979). These, in particular, give the conjugacy class X a geometric structure, as a vari-
ation of polarizable Hodge structures. For a compact open subgroup K C G(Ay), we
can form the double quotient

G(Q\ (X x G(Ay)) /K.

This is, a priori, a complex manifold (at least if K is sufficiently small). However, the
axioms of a Shimura datum ensure that this complex manifold arises in a canonical way
from an algebraic variety Sk, called a Shimura variety, defined over a number field E,
called the reflex field of the Shimura datum.

There is a complete classification of connected reductive groups that admit a Shimura
datum. For example, this holds for G = GSp,,,/Q. The associated Shimura varieties
are called Siegel modular varieties and they are moduli spaces of principally polarized
abelian varieties of dimension n equipped with level structures. More generally, one can
consider Shimura varieties of PEL type, which represent moduli problems of abelian vari-
eties equipped with polarizations, endomorphisms and level structures. These Shimura
varieties are the easiest to study with moduli-theoretic techniques. The next best un-
derstood class is that of Shimura varieties of Hodge type, where the Shimura datum
admits a closed embedding into some Siegel Shimura datum.

The /¢-adic étale cohomology groups of Shimura varieties are equipped with many
different kinds of symmetries. There is a Hecke symmetry, coming from the action
of the finite adelic group G(Ay) on the inverse system of Shimura varieties of varying
level K. There is also a Galois symmetry, coming from the action of the absolute
Galois group Gal(E/E). The relationship between the Hecke action and the Galois
action is determined by the global Langlands correspondence. A precise conjecture
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was formulated in Kottwitz (1990) for the L? or intersection cohomology of Shimura
varieties.

A weaker version of the relationship between the Galois and Hecke actions is encoded
in the FEichler—Shimura relations, which were conjectured in Blasius and Rogawski
(1994). Roughly, the expectation is that the Frobenius at an unramified prime, acting
on the étale cohomology of a Shimura variety, satisfies a certain Hecke polynomial. This
extends the well-known Eichler—Shimura relation for the modular curve; the proof there
can be generalized in the PEL case when the group of the Shimura datum is split at
the unramified prime in question (Wedhorn, 2000). There has been significant recent
progress on the Eichler-Shimura relations that goes beyond this case due to Lee (2021)
and Wu (2025). Wu proved the Eichler—Shimura relations for a very general class of
Shimura varieties, namely those of Hodge type. His proof relies on the version of the
geometric Satake equivalence established by Fargues—Scholze.

In addition to f-adic cohomology, the étale cohomology of Shimura varieties with
integral or torsion coefficients received a great deal of attention over the past decade.
Calegari and Geraghty (2018) formulated an exciting program to extend the celebrated
method of Taylor and Wiles (1995) for proving modularity to more general number
fields, such as CM fields. Their program required a very precise understanding of the co-
homology of Shimura varieties (and more general locally symmetric spaces) with integral
coefficients. Motivated by this program, Calegari-Geraghty and Emerton independently
suggested that, after localising at a sufficiently generic system of Hecke eigenvalues,
the cohomology of Shimura varieties with Zs-coefficients should be concentrated in the
middle degree and torsion-free.

The first general torsion vanishing results of this kind were proved in Caraiani and
Scholze (2017, 2024) for PEL type A Shimura varieties, treating p as an auxiliary prime
and imposing a genericity condition on the Langlands parameter at p. These works use
a trace formula computation at a key step in the argument. These results were crucial
ingredients in new (potential) modularity results over CM fields and in the proof of
new instances of the famous Sato—Tate and Ramanujan conjectures, starting with Allen
et al. (2023). The Bourbaki talk of Colmez (2024) discusses these applications in more
detail, together with other exciting developments in the arithmetic global Langlands
program.

As observed by Koshikawa (2021Db), the work of Fargues—Scholze allowed one to obtain
a more elegant proof of torsion vanishing, by-passing the use of the trace formula. In
fact, Koshikawa used the work of Fargues—Scholze to prove analogous vanishing results
for the local Shimura varieties with integral coefficients. Furthermore, in Koshikawa
(2021a), he also proved a version of the Eichler-Shimura relations in the context of local
Shimura varieties.

More recently, the study of geometric Eisenstein series by Hamann (2025b) led to even
more powerful torsion-vanishing theorems and to a more flexible approach in Hamann
and Lee (2025), which could be used to study a more general class of Shimura varieties.
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The most elegant approach to date to both Eichler—Shimura relations and torsion
vanishing results uses the so-called Igusa stack™. The Igusa stack connects Shimura
varieties to the geometric Langlands program over the Fargues—Fontaine curve.

Assume, for simplicity, that (G, X) is a Shimura datum of PEL type, giving rise to a
compact Shimura variety of some dimension d € Z>;. Let v | p be a a prime of E and
set I/ := E,. For some (sufficiently small) compact open subgroup K” C G(A%), denote
by Skr the corresponding perfectoid Shimura variety over E with infinite level at p and
tame level KP. Following a conjecture of Scholze, Zhang (2023) proves that there is a
v-stack Igsy, that fits in a Cartesian diagram”) of v-stacks in Perfy,

(29) Sy — Tl

|

THT
Igsgy —— Bung

The top horizontal arrow is the Hodge-Tate period morphism, which measures the
variation of p-adic Hodge-Tate structure on the universal abelian variety. The right
hand side of the diagram is purely local: the flag variety is (essentially) part of the
local Hecke stack, parameterizing meromorphic modifications of the trivial G-bundle,
with poles bounded by a minuscule cocharacter. The morphism to Bung is given by
Beauville-Laszlo gluing. The left hand side of the diagram has a global flavor; the Igusa
stack is equipped with a Hecke action away from p and the morphism Skr — Igsk, is
equivariant for this action.

Remark 4.3. — The Cartesian diagram (29) has its origins in the Mantovan product
formula that was first established in Harris and Taylor (2001), Oort (2004), and Man-
tovan (2005). The original formula provides a uniformization of Newton strata inside
Shimura varieties in terms of Igusa varieties and Rapoport—Zink spaces. In the special
case of a basic Newton stratum, this goes back even earlier, to the p-adic uniformization
results of Rapoport and Zink (1996). A cleaner version of the Mantovan product for-
mula was established in Caraiani and Scholze (2017), working on the adic generic fiber
with perfectoid Shimura varieties and Igusa varieties, but still restricted to individual
Newton strata.

The relative cohomology of the Igusa stack recovers the cohomology of the Shimura
variety, essentially after applying a geometric Hecke operator as in §3. Assume, for
simplicity, that A is a torsion Zy-algebra and set .# = RﬁHT,Fq!A‘ The conjugacy class
X determines a conjugacy class {u} of cocharacters of G defined over E called the
conjugacy class of Hodge cocharacters. In turn, this determines (up to isomorphism) an

(18)The Igusa stack is not strictly necessary to prove torsion-vanishing, but it provides a conceptually
clearer proof.

(19)By the uniqueness properties established in Kim (2025), the Igusa stack is essentially characterized
by the fact that it fits into the Cartesian diagram (29). See Theorem A and Definition 1.1 of loc. cit.
for the precise statement.
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algebraic representation V,, of L@ over A. We denote by T, the Hecke operator Ty, ().
We then have the formula (Daniels, Hoften, Kim, and Zhang, 2024, Theorem 8.4.10)

(30) RT(Sy, 5. A) = T, F[—d (g) |

where 4; : Bung, < Bung denotes the inclusion of the neutral point, and where the
isomorphism uses the identification of D(Bung, A) with D(G(Q,), A) from Theorem 2.11.
The isomorphism (30) is equivariant for the Hecke action away from p, for the G(Q,)-
action, and for the action of the Weil group Wg.

The formula (30) decomposes down the cohomology of Shimura varieties into two
parts: a global part, given by the relative cohomology of the Igusa stack, and a purely
local part, given by the Hecke operator 7},. The relative cohomology of the Igusa stack .%#
is an object of D(Bung, A), so it is equipped with the spectral action of Fargues—Scholze.
This brings powerful new tools from the geometric Langlands program into the study
of the cohomology of Shimura varieties.

We briefly explain the proof of the Eichler—Shimura relations, following Daniels,
Hoften, Kim, and Zhang (2024), who strengthened the results of Wu (2025), using a
more direct argument. Their argument was inspired by the argument in Koshikawa
(2021a) for local Shimura varieties. The conjugacy class {u} of Hodge cocharacters
determines a Wg-equivariant vector bundle V, on the moduli stack Z'(Wg,, G)/G of
L-parameters for G .= G xg Q,. The formula (30) shows that the cohomology of the
Shimura variety is obtained from the relative cohomology of the Igusa stack via the
spectral action of V,, as in Example 3.10. One has a composition of morphisms

W = moEnd . 2,6(V) = Enda (RT(Sg 7. 0)) |

which agrees with the usual (geometric) action of Wg on RI'(Sg, 5, A). One obtains
similarly an action of the spectral Bernstein center Z*P*°(G, A) on RI'(Sk, 5, A), which
factors through the action of the usual Bernstein center Z(G(E), A). One then proves
the necessary relations on the spectral side, using a version of the Cayley—Hamilton
theorem.

The proof of torsion vanishing also uses the formula (30), together with the observation
that .# is a perverse sheaf with respect to a natural perverse t-structure on Bung. The
purely local results of Hamann (2025b) imply that the Hecke operator T), is perverse
t-exact after localizing at a sufficiently generic local Langlands parameter at p. This
is enough to deduce that the cohomology RI'(Sy, 7, A) is concentrated in the middle
degree d. We note that these results use the compatibility between the semi-simple
parameters constructed by Fargues—Scholze with more classical approaches to the local
Langlands correspondence, which is discussed in Remark 3.3.

Remark 4.4. — Very recently, Yang and Zhu (2025) proved very general vanishing
results for the generic part of the cohomology of Shimura varieties of abelian type
with torsion coefficients. Their work does not directly use the work of Fargues—Scholze.
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Instead, it relies on the results of Zhu (2025) on the tame categorical local Langlands
correspondence, but it also makes use of a version of the Igusa stack and is morally
inspired by the argument described above. In Yang (2025), these results, together
with the Igusa stack, are further used to prove, under certain technical assumptions, a
conjecture of Clozel, Harris, and Taylor (2008) known as Thara’s lemma.
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