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Introduction

The idea of applying topological methods to algebraic geometry dates back at least to
Lefschetz, who in 1924 envisioned extending the nascent techniques of Analysis Situs to
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the study of algebraic varieties. Through the use of Lefschetz pencils, he introduced a
topological viewpoint on phenomena such as degenerations and the behavior of varieties
near their boundaries — ideas that already foreshadowed the modern concept of rational
equivalence, which fundamentally encodes the deformation of cycles along the projective
line P1, and suggested a deep connection between geometry and homotopy theory. This
foundational perspective was later profoundly reshaped by Grothendieck, who elevated
the use of sheaves and topos theory as central tools for structuring and understanding
cohomological invariants, culminating in his visionary and revolutionary, yet unfinished,
theory of motives.

Beilinson revived this vision by formulating the concept of motivic cohomology, con-
ceived as a universal cohomology theory for algebraic varieties, akin to singular cohomol-
ogy in topology. His conjectures, especially those concerning the relation with algebraic
K-theory and cycles, became a major driving force in the development of the theory.
On the topological side, the advent of stable homotopy theory, initiated by Adams and
his successors, introduced a new language centered around generalized cohomology and
orientation theory; Brown representability, characteristic classes, and formal group laws
became essential tools, shaping the modern understanding of stable phenomena. These
culminated in the development of chromatic homotopy theory, a guiding philosophy
that now serves as a central framework for understanding the layered structure of stable
homotopy.

Motivic homotopy theory lies at the crossroads of these ideas and structures. Intro-
duced by Voevodsky and later developed systematically with Morel, it seeks to import
the methods of algebraic topology into the realm of algebraic geometry, first by defining
homotopies using the affine line A1, and second by building their homotopy theory
within the topos of sheaves over smooth schemes, building on the foundational work
of Illusie, Joyal, and Jardine. Motivic homotopy theory draws inspiration from several
sources: from the theory of motives, with its Tate twists and philosophy of weights;
from motivic cohomology, grounded in the theory of algebraic cycles and Chow groups;
and from stable homotopy theory, especially through the examples of cobordism and
Morava K-theories. Over time, it has developed into a rich and coherent framework
that unifies these diverse perspectives.

At the heart of this unifying approach lies the theory of motivic homotopy sheaves,
whose internal structure is governed by unramified cohomology. While the latter was
originally developed by Gersten, Bloch–Ogus, and others, it reappears in motivic homo-
topy theory as an intrinsic phenomenon, encoded in the properties of motivic homotopy
sheaves with respect Gersten resolutions. These ideas are central to Voevodsky’s ap-
proach to motivic complexes and play a foundational role in Morel’s generalization
to the full A1-homotopy framework over a field. Through this perspective, motivic
homotopy sheaves reflect the local-to-global nature of algebraic phenomena and serve
as a key organizing tool in both the unstable and stable settings. Remarkably, they
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are also accessible to explicit computation, a feature we will illustrate throughout these
notes.

The impact of motivic homotopy theory has been both broad and deep. It played
a central role in Voevodsky’s proof of the Milnor and Bloch–Kato conjectures, which
establish powerful bridges between motivic cohomology and étale cohomology, Galois
cohomology and and Milnor K-theory. It also led to the development of the theory of
motivic complexes and the six functors formalism, and to Ayoub’s theory of the motivic
Galois group. Morel’s foundational work introduced new quadratic invariants — such
as the Chow–Witt groups — which opened new perspectives on quadratic enumerative
geometry lead by Levine and Wickelgren, giving for example the emerging notion of
quadratic L-functions. The decomposition of stable motivic homotopy theory into ±-
parts has revealed previously unseen structures in algebraic geometry, particularly over
real fields, where motivic realization functors extend the classical links with complex
geometry into genuinely new territory connected to real algebraic geometry.

Motivic obstruction theory has also provided fresh approaches to the classification
of algebraic vector bundles, through classifying spaces and characteristic classes valued
in Chow–Witt groups, as developed notably by Asok and Fasel (building on an idea of
Morel) in their work on Murthy’s splitting conjecture. More broadly, motivic homotopy
invariants often mirror those in classical homotopy theory. Over time, increasingly rich
connections between motivic and classical stable homotopy theory have been uncovered,
thanks in part to the structural insights made possible by the Milnor and Bloch–Kato
conjectures. These links have profoundly transformed the computation of classical stable
stems, notably through the motivic approach advanced in its latest stage by Isaksen,
Wang, and Xu (2023), which will form the central focus of the final part of these notes.
Let us finally mention that the motivic approach, via synthetic homotopy theory, also
led to a proposed resolution of the last remaining case of the Kervaire invariant one
problem, in recent work by Lin, Wang, and Xu (2025).

The present text is structured to support a gradual conceptual progression and to
highlight the central ideas of motivic homotopy theory. The first part lays out guiding
principles, beginning with complex and real realization functors, naïve A1-homotopies,
and the choice of topology, gradually introducing model categories and ∞-categories
only as needed. The second part is devoted to unstable motivic homotopy theory, using
the language of sheaves and localizations more extensively, and motivating the definition
of motivic homotopy sheaves. The third part presents stable homotopy theory via P1-
stabilization, and studies motivic stable stems through the lens of Morel’s degree, slice
filtration and higher homotopy tools. The final part is devoted to recent developments,
in particular the computations of motivic and classical stable stems based on the motivic
Adams spectral sequence and the deformation of homotopy theories via the motivic
class τ , drawing from the work of Isaksen, Wang, and Xu (2023).
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This text is written to be accessible at multiple levels. The first two parts are aimed
at readers with a basic background in algebraic topology and algebraic geometry. The
latter sections require more familiarity with stable homotopy theory, and in particular
the last part fully adopts the language of∞-categories. A brief review of this formalism
is included at the end of the first section. We have tried throughout the text to
maintain a pedagogical style, giving all necessary definitions and providing references
to the literature.

We also refer the reader to several excellent surveys on motivic homotopy theory,
each offering a distinct point of view; see e.g. Antieau and Elmanto (2017), Wickelgren
and Williams (2020), Asok and Østvær (2021)

Conventions

Throughout these notes, k denotes a fixed base field.

We work in the language of schemes: all schemes are assumed to be of finite type
over k. By a (algebraic) variety over k, we mean a quasi-projective scheme, that is, a
scheme locally defined by polynomial equations in an affine or projective space. Readers
unfamiliar with the language of schemes may safely replace k-schemes with algebraic
varieties over k; the general theory remains unaffected.

Unless stated otherwise, the term “monoidal” means “symmetric monoidal”. Units of
monoidal categories are typically denoted by 1.

A “space” always refers to a simplicial set. A “presheaf” (resp. “sheaf”) means,
without explicitly stated otherwise, a presheaf (resp. Nisnevich sheaf) over the category
Smk of smooth schemes over k. A “k-space” is a presheaf of simplicial sets on Smk.

In the last section, all formal group laws are assumed to be commutative.

Concerning foundational choices: the unstable part of the theory is formulated, as
far as possible, using a combination of model categories and ∞-categories, in order to
help the reader navigate the existing literature. The stable part, however, relies more
systematically on the ∞-categorical formalism.
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1. A few guiding principles

1.1. Complex and real homotopy types of algebraic varieties

The main motivation behind motivic homotopy theory is to extend the invariants
of classical homotopy theory to algebraic varieties. As envisioned by Lefschetz one
century ago, the main guide to do so is to use the topological space underlying complex
algebraic varieties. In fact, one of the appealing features of motivic homotopy is that it
also naturally incorporate the homotopy of real algebraic varieties.

Let us consider a real or complex embedding σ : k → E = R,C of our base field k,
and X be an algebraic k-variety. When σ is a complex embedding, we let Xσ(C) =
Homk(Spec(C), X) be the set C-points of X, where SpecC is viewed as a k-scheme via σ,
endowed with its natural analytic topology — coming from its canonical structure of
complex analytic variety: see Grothendieck, 2003, XII, Th. 1.1. Similarly, when σ is a
real embedding, we let Xσ(R) = Homk(Spec(R), X) endowed with canonical euclidean
topology (similarly coming from its structure of real analytic variety). In any case,
one can define the σ-Betti homotopy type of the k-scheme X, that is the isomorphism
class of the topological space underlying Xσ(E) in the homotopy category Htop. It is
instructive to determine this purely topological invariant of k-schemes in a few cases,
left as exercises to the reader.

k-schemes real case complex case
An ∗ ∗
P1 S1 S2

Gm S0 S1

An − {0} Sn−1 S2n−1

x2 = y3 (cuspidal curve) * *
y2 = x2(x + 1) (nodal curve) S1 S1

Q2n−1 := VA2n(∑n
i=1 xiyi = 1) Sn−1 S2n−1

Q2n := VA2n+1(∑n
i=1 xiyi = z(1 + z)) Sn S2n

σ-Betti homotopy type

Therefore, with the aim to define a motivic homotopy type which admits both a real
and complex realization, this table tells us two things:

1. the affine line should be contractible;
2. there are several algebraic models whose motivic homotopy type should look like

a sphere.

1.2. Naive A1-homotopies.

As suggested by the considerations of the previous subsection, Voevodsky’s funda-
mental idea emerges: to use the affine line A1

k to parameterize motivic homotopies.
This echoes the notion of rational equivalence on algebraic cycles, already considered
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by Lefschetz, except one uses the projective line in the case of cycles. One introduces
the following definition:(1)

Definition 1.1. — One defines the naive A1-homotopy equivalence relation on mor-
phisms of k-schemes as the transitive relation generated by the following symmetric and
reflexive relation between two morphisms f, g : Y → X of algebraic k-varieties:

∃H : A1 × Y → X | H ◦ s0 = f, H ◦ s1 = g

where s0 and s1 are respectively the zero and unit sections of A1
k.

A k-scheme X is naively A1-contractible if it admits a rational point x and the
identity map IdX is naively A1-equivalent to the composition X → Spec(k) x−→ X.

In particular, both the algebraic affine k-variety An
k and the cuspidal curve V : x2 = y3

are naively A1-contractible.
This equivalence relation is compatible with composition. Therefore one can define the

naive motivic homotopy category as the category whose objects are smooth k-schemes
and morphisms are given by naive A1-homotopy equivalence classes simply denoted by
[X, Y ]N . As in topology, we will see that this definition is not strong enough to define a
suitable motivic homotopy theory (see in particular 2.36). But remarkably, it is already
possible to make computations with this definition. Let us first introduce the pointed
version.

Definition 1.2. — A base point of a k-scheme is a rational point x ∈ X(k). One
defines naive pointed A1-homotopy equivalence relation between two pointed morphisms
f, g : (Y, y)→ (X, x) as above, but requiring that the homotopies H(t,−) are all pointed
maps.

We let [(Y, y), (X, x)]N• be the naive A1-homotopy classes of pointed maps modulo this
equivalence relation.

1.2.1. Witt monoid. — One of the striking aspects of motivic homotopy theory, as
discovered by Morel, is its surprising connection to the theory of quadratic forms —
more accurately, inner products, to accommodate characteristic 2. Let us recall some
basic definitions of this rich and fascinating subject — the reference book Milnor and
Husemoller (1973) will be well-suited to our point of view.

The isomorphism classes of finite-dimensional non-degenerate symmetric bilinear
forms over k form a monoid under orthogonal sum which we denote by (MW(k), +) and
refer to as the Witt monoid. Note moreover that the tensor product induces a semi-ring
structure on MW(k), denoted simply by (MW(k), +,×). Let Q(k) := k×/(k×)2 be the
quadratic classes of units of k, equipped with its group structure. Then one obtains a
canonical morphism of (multiplicative) monoids: (Q(k),×)→ (MW(k),×) which to a

(1)In Morel and Voevodsky (1999, p. 88-89), it was called a strict A1-homotopy equivalence. The
following terminology seems to be the more commonly used now.
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unit u associates the symmetric bilinear form u.xy, whose isomorphism class is denoted
by ⟨u⟩. Standard notations in this context are:

– ⟨a1, . . . , an⟩ = ⟨a1⟩+ · · ·+ ⟨a1⟩, for the obvious diagonal symmetric bilinear form;
– h = ⟨1,−1⟩, the hyperbolic form.

One then defines two associated rings:

– the Witt ring W(k) of k which is the quotient of (MW(k), +,×) with respect to
the classical Witt equivalence relation;

– the Grothendieck–Witt ring GW(k) of k which is the group completion of the
additive monoid (MW(k), +) equipped with the induced ring structure.

Note that one deduces from these definitions that W(k) = GW(k)/(h).
One has two universal invariants associated with an element of MW(k), say

given by the isomorphism class of (V, φ): the rank dimk(V ), and the discriminant
disc(V, φ) ∈ Q(k).

Note also that in characteristic not 2, the monoid (MW(k), +) is cancellative, leading
to a monomorphism: MW(k) → GW(k). In characteristic 2, we let MWs(k) be the
universal cancellative monoid associated with MW(k), so that MWs(k) → GW(k) is
the universal monomorphism.

1.2.2. Cazanave’s theorem. — Let us now consider our motivic sphere P1
k, pointed

by ∞ according to Definition 1.2. A pointed endomorphism of P1
k is represented by a

rational function f = A
B

where A, B ∈ k[t] are coprime monic polynomials such that
n = deg(A) > deg(B). In this situation, one classically associates to (A, B) the Bezout
matrix Bez(A, B), which is a symmetric bilinear form whose determinant is given by
(−1)n(n+1)/2.res(A, B). We then define a canonical application:

(1.2.a) End•(P1
k)→ MWs(k)×Q(k) k×f 7→

(
Bez(A, B), (−1)n(n+1)/2.res(A, B)

)
The following theorem was obtained in Cazanave (2012, Cor. 3.10, Th. 4.6).

Theorem 1.3. — Consider the above notation. Then the above map induces a bijection
of pointed sets:

[P1
k,P1

k]N• → MWs(k)×Q(k) k×

and in fact an isomorphism of semi-ring, for suitably defined addition on the left hand-
side, multiplication being composition.

This result will allow us to measure the difference between naive A1-homotopies and
weak A1-homotopies; see Example 2.36.
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1.2.3. Presentations. — The additive group of the Witt ring (W(k), +) has a well-
known presentation, due to Witt, as the abelian group generated by ⟨u⟩ for a quadratic
class u ∈ Q(k) modulo the relations:

(1.3.a) h = 0, ⟨u, v⟩ = ⟨u + v, (u + v)uv⟩, u, v ∈ Q(k), u + v ̸= 0

One also gets the presentation of (GW(k), +) as the abelian group genereated by ⟨u⟩
for a quadratic class u ∈ Q(k) modulo the single relations

(1.3.b) ⟨u, v⟩ = ⟨u + v, (u + v)uv⟩, u, v ∈ Q(k), u + v ̸= 0

One deduces from the above theorem the following very explicit computation of naive
A1-homotopy classes.

Corollary 1.4. — The pointed set [P1
k,P1

k]N• has a structure of abelian groups which
is generated by the symbols (u) for the class of a unit u ∈ k×/(±1), corresponding to
the endomorphism (x : y) 7→ (ux : y),(2) modulo the unique relation:

(u, v) = (u + v, (u + v)uv), u + v ̸= 0

where (u, v) = (u) + (v).

1.3. The choice of topology

1.3.1. — The category of algebraic varieties is too coarse to allow for homotopy the-
oretic constructions such as path spaces, mapping cylinders, etc. As stated in the
introduction the solution is to embed k-schemes into an appropriate topos, that is using
sheaves for an appropriate Grothendieck topology.

For motivic homotopy theory, the Zariski topology is not strong enough. Indeed,
smooth k-varieties look like An

k only étale locally. On the other hand, the étale topology
is too strong: algebraic K-theory, as well as motivic cohomology, do not satisfy étale
descent.(3) The Nisnevich topology is a topology intermediate between the Zariski and
étale topologies that captures some good features of both.(4) whose covers are given by
the étale surjective families (pi : Xi → X)i∈I such that for any x ∈ X, there exists i ∈ I,
and xi ∈ Xi such that pi(xi) = x and the induced extension of residue fields κ(xi)/κ(x)
is trivial.

Here are the main advantages of the Nisnevich topology:

1. the cohomology of a point (spectrum of a field) is trivial;
2. algebraic K-theory does satisfy Nisnevich descent (Thomason and Trobaugh, 1990);

(2)with the convention that (0 : 1) =∞
(3)For motivic cohomology, the failure of étale descent is quantified by the Beilinson-Lichtenbaum
conjecture, now a theorem of Voevodsky. See Riou (2014, Conj. 1.16), and also Section 4.2.
(4)It was introduced by Nisnevich in Nisnevich (1989).
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3. a closed immersion Z ⊂ X of smooth k-schemes looks Nisnevich-locally like the
0-section of an affine space.(5)

In particular, the Grothendieck site chosen for motivic homotopy theory is the category
of smooth k-schemes Smk, equipped with the Nisnevich topology.(6) Below we recall
for the comfort of the reader a few important aspects of this particular Grothendieck
topology (see Morel and Voevodsky, 1999, §3.1).

1.3.2. Excision property. — A (Nisnevich/elementary) distinguished square is a carte-
sian square of smooth k-schemes

W //

�� ∆
V

p��

U
j
// X

such that p is étale, Z = X − U is seen as a reduced closed subscheme of X, and the
induced morphism T = p−1(Z)→ Z is an isomorphism.

In fact, the family of morphisms of the form (p, j) attached to a distinguished square
as above generates the Nisnevich topology. In this situation, one deduces by taking
quotient a morphism of pointed sheaves,(7)

X/U = X/(X − Z)→ V/(V − T ) = V/W.

which can be seen to be an isomorphism. This is the so-called excision property.

Example 1.5. — 1. The obvious inclusion induces an isomorphism A1/Gm → P1/A1

of pointed sheaves.
2. Let Z → X be a closed immersion of smooth k-schemes. Assume there exists an

étale morphism p : X → An
k such that Z = p−1(Ac

k). Then there exist an open
subscheme Ω ⊂ (X ×An

k
Ac

Z) containing Z as a closed subscheme and such that the
obvious projection map induces isomorphism of pointed sheaves:

X/(X − Z) ∼←− Ω/(Ω− Z) ∼−→ Ac
Z/(Ac

Z − Z).

This property gives another concrete interpretation of point 3. in Section 1.3.1.

1.3.3. Points. — A point of the Nisnevich site Smk is given by a pair (X, x) where
X is a smooth k-scheme and x ∈ X an element of the underlying set. The fiber of a
presheaf/sheaf F on Smk at the point (X, x) is defined as

FX,x = lim−→
V/X

F (V )

(5)i.e., for all x ∈ Z, one gets a (non-canonical) isomorphism Xh
(x) ≃ (Ac

κ(x))h
(0), where Xh

(x) is the
Nisnevich localization of X at x, in other words, the spectrum of the henselization of the local ring
of X at x.
(6)The restriction to smooth k-schemes is primarily justified by point (3).
(7)Indeed, this type of quotients always gives canonically pointed objects by the map ∗ = U/U → X/U

of sheaves of sets.
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where V ranges over the Nisnevich neighborhoods of x in X.(8) This defines a fiber
functor F 7→ FX,x, i.e., commutes with colimits and finite limits. The family of these
fiber functors is conservative on the category of sheaves of sets on Smk: it preserves and
detects isomorphisms (and monomorphisms).

Let E/k be a finitely generated separable extension of k. Note that E is the filtering
colimit of its sub-k-algebra A ⊂ E with A/k smooth (of finite type). Given any
(pre)sheaf F over Smk, we put:

F (E) := lim−→
A⊂E

F (Spec(A)).

Obviously, given any smooth connected k-scheme X with generic point η, and an
isomorphism E ≃ κ(X) = Oh

X,η, one gets a canonical isomorphism F (E) ≃ FX,η, so
that F 7→ F (E) is a fiber functor of the Nisnevich site on Smk.

1.4. Tools from higher homotopy theory
This section can be avoided on a first reading. Motivic homotopy relies on two

theoretical tools in order to study localized categories — an operation introduced
in Gabriel and Zisman (1967) — along a set of morphisms: model categories and
∞-categories. Nowadays, model categories are often viewed as presentations of ∞-
categories. The ∞-categorical perspective is therefore more synthetic and elegant.
However, since most of the current literature in motivic homotopy theory still uses
model categories, we have tried to provide the reader with sufficient tools to navigate
between the two points of view.

1.4.1. Model categories. — Model categories were introduced in Quillen (1967), as a
generalization of the homological algebra of Cartan and Eilenberg, and as a synthesis
between the homotopy theories of topological spaces and simplicial sets (after Daniel
Kan). They became the central tool for all generalizations of homotopy theory in other
context than topology. This is particularly the case of motivic homotopy, which was
developed using a particular model category on simplicial Nisnevich sheaves.

Model categories are designed to study categories obtained by formally inverting a
collection W of morphisms, generically called weak equivalences, in a category whose
objects are considered as models. The main idea is to build two kinds of resolutions,
called fibrant (analogue of injective) and cofibrant (analogue of projective), out of the
so-called small object argument(9) The central result is that morphisms in the localized
category from a cofibrant object to a fibrant object can be computed by classes of
morphisms in the original category up to an explicit equivalence relation. To achieve this,
one requires the existence of two collections Fib and Cof of morphisms called fibrations
and cofibrations respectively. They are bound to satisfy a clear and simple axiomatic

(8)i.e., the étale X-scheme with a point v ∈ V over x such that the residual extension κ(v)/κ(x) is
trivial.
(9)which actually originally appeared in Cartan and Eilenberg (1956) to prove the existence of injective
resolutions.
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that draw inspiration from both the properties of injective and projective objects in
homological algebra, and from the homotopy lifting property that characterizes fibrations
in topology.(10) An important tool of model categories is that, under appropriate
assumptions, they can be localized, by adding more weak equivalences. We will review
this procedure below.

1.4.2. ∞-categories. — After developing his theory, Quillen had the major intuition
that model categories concealed a deeper structure:

[p. 0.4 of Quillen, 1967] Presumably there is a higher order structure ([8],
[17]) on the homotopy category which forms the part of the homotopy theory
of a model category, but we have not been able to find an inclusive general
definition of this structure with the propery that this structure is preserved
when there are adjoint functors which establish an equivalence of homotopy
theories.

The said higher order structure took many years to be uncovered. It is the theory of
∞-categories, due to many mathematicians and which was presented at the Bourbaki
seminar by Cisinski (2016). As in op. cit., we take Lurie (2009) as a reference —
therefore, we use Joyal’s theory of quasicategories as a model for ∞-categories. Here
are the important points to keep in mind:

– Any category admits an associated ∞-category via the nerve functor (see §2 in
Cisinski, 2016).

– Many (if not all) classical constructions and concepts from category theory extends
to ∞-categories: adjoint functors, equivalences, Kan extensions, limits/colimits,
pro/ind-objects, (co)fibred category, etc.

– Every ∞-category C admits a mapping space functor denoted by MapC (X, Y ) for
objects X and Y . In fact, one can view any ∞-category as a simplicial category;
see §12, and Theorem 12.4, in Cisinski (2016).

1.4.3. Localizations. — In both model categories and ∞-categories, the fundamental
operation is that of localization, the procedure of adding invertible morphisms.

Under a suitable assumption, there is a context, seemingly first formulated by Bous-
field, in which this localization procedure is more structured and better suited for
computations. This corresponds to the property of being combinatorial for model
categories, and presentable for ∞-categories.

Let us describe this particular type of localization for ∞-categories, called left lo-
calization in Cisinski (2016). Let C be a presentable ∞-category and W be a set of
morphisms. One introduces the following definitions:

– an object X of C is W -local if for any f0 ∈ W , the map MapC (f0, X) is a weak
equivalence;

(10)In fact, according to the usual abuse of terminology, we call model category what Quillen defined
as a closed model category in Quillen (1967, I.5 Definition 1).
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– a morphism f on C is a W -local weak equivalences (or simply weak W -equivalence)
if for any W -local object X, the map MapC (f, X) is a weak equivalence.

Letting W be the set of weak W -equivalences, there exists a functor π : C → C [W −1] of
∞-categories(11) which admits a right adjoint ν which is fully faithful and with essential
image the W -local objects. We put LW = ν ◦ π and call it the W -localization functor.

Example 1.6. — The main example for us comes from ∞-topoi which are left local-
izations of the presentable ∞-category of presheaves on some Grothendieck site (see
Cisinski, 2016): we will work with the ∞-topos of Nisnevich sheaves on the site
Smk of smooth k-schemes.

1.4.4. Monoidal structures. — Among the many advantages of ∞-categories, it is
possible to transport all the definitions and constructions from the theory of monoidal
categories. As ∞-categories must always encode all the higher structures in a precise
way, the theory has its roots in the point of view of operads. We refer the reader to
the excellent account of Groth (2020, §3, 4) for the definitions of symmetric monoidal
∞-category, and commutative monoid objects in them.

2. Unstable motivic homotopy

2.1. Homotopy theory of Nisnevich sheaves

2.1.1. k-Spaces. — Our basic “homotopical objects” will be the simplicial presheaves
on the category Smk:

X : (Smk)op → ∆opSet,

simply called k-spaces. The corresponding category, with morphisms the natural trans-
formations, is denoted by PSh(k, ∆opSet). Note that it contains as a full subcategory
the category of Nisnevich simplicial sheaves Sh(k, ∆opSet). Both categories will serve
as models for motivic homotopy types.

Example 2.1. — 1. Let X be an arbitrary k-schemes. Then the (pre)sheaf it repre-
sents X(−) = Hom(−, X) can be seen as a discrete simplicial sheaf, and therefore
as a (discrete) k-space. When X is a smooth k-scheme, we will abusively denote
it by X.(12)

2. Given an arbitrary simplicial set E•, one can consider the constant simplicial
presheaf U/S 7→ E• and view it as a k-space. We will abusively denote it by E•.

(11)satisfying the usual universal property, and in particular unique in the ∞-categorical sense;
(12)This is harmless because of the Yoneda lemma. Beware however that it is different for singular
schemes: as an example, if X is a non reduced k-scheme, with reduction Xred, the nil-immersion
ν : Xred → X induces an isomorphism of k-spaces ν∗ : Xred(−)→ X(−).
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2.1.2. Pointed k-spaces. — According to the notation of the previous example, the
point ∗ seen as a k-space coincide with Spec(k). It is the final object of the category
of k-spaces. As in topology, a base point of X is a map x : ∗ → X , and we say that
(X , x) is a pointed space. Given a k-space X , we also denote by X+ the pointed k-space
with a free base point added. As in topology, one defines a natural symmetric monoidal
structure on pointed k-spaces whose product is the smash product:

X ∧ Y = X × Y/[(∗ × Y) ∪ (X × ∗)].

Similarly, the coproduct in pointed k-spaces is denoted by ∨, and called the wedge
product.

Example 2.2. — (See Joyal and Tierney, 1993, §4, Morel and Voevodsky, 1999, §4.1,
p. 123, 128) Let G be a smooth group scheme over k. We define the pointed k-space
BG as the presheaf:

U 7→ B
(
G(U)

)
where G(U) is seen as a group and B(−) denotes the usual simplicial classifying space
construction. The base point of BG is given by the identity element e ∈ G(k) = BG0(k).
Note that BG is clearly a simplicial sheaf.

In fact, this construction of classifying spaces in a topos appears for the first time in
Joyal and Tierney (1993, §4), and makes sense for any sheaf of groups — actually any
sheaf of groupoids in loc. cit. This pioneering work of Joyal and Tierney is part of the
long story for the quest for ∞-stacks.

2.1.3. Weak equivalences. — As explained in the introduction, one can do homotopy
theory using simplicial (pre)sheaves. This was originally introduced by Illusie (1971).
The reader can find a thorough account in Jardine (2015). Here is the particular case
of this theory that is relevant to us.

Definition 2.3. — A morphism of k-spaces Y → X is a (Nisnevich-)local weak
equivalence(13) if for any Nisnevich point (X, x) on Smk, the induced morphisms YX,x →
XX,x on the fiber at (X, x) is a weak equivalence of simplicial sets.

Remark 2.4. — A global weak equivalence is a morphism of k-spaces Y → X such that
for all smooth k-schemes U , the induced morphism Y(U) → X (U) on global sections
over U is a weak equivalence. This terminology is due to Jardine.

(13)Illusie says quasi-isomorphism in op. cit. This terminology has been replaced by the present one in
the second period of study of simplicial sheaves, after Heller, Joyal and Jardine.
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2.1.4. Homotopy sheaves. — Let X be a k-space (resp. (X , x) be a pointed k-space).
One defines its 0-th (resp. n-th) homotopy sheaf as the (Nisnevich) sheaf associated
with the presheaf of pointed sets (resp. groups if n = 1, abelian groups if n > 1)

U 7→ π0
(
X (U)

)
, resp. πn

(
X (U), xU

)
.

We say that a map of pointed k-spaces f : (Y , y)→ (X , x) is a local weak equivalence if
it is so after forgetting the base points. Then it induces an isomorphisms on homotopy
sheaves for any n ≥ 0

(2.4.a) f∗ : πn(Y , y)→ πn(X , x).

Remark 2.5. — One should be careful, however, that the latter condition is not enough
to guarantee that f is a Nisnevich weak equivalence in the sense of Definition 2.3. In
fact, one must consider all possible choices of base points; see Illusie (1971, §2.2.1).

Here is a particular case where this issue does not arise. We will say that a k-
space X is locally connected if π0(X ) is the constant sheaf. Then a pointed morphism
f : (Y , y)→ (X , x) between locally connected k-spaces is a weak equivalence if and only
if the maps (2.4.a) are isomorphisms for all n > 0.

Example 2.6. — Let G be a smooth group scheme over k. Then, as expected, one
deduces from its construction that BG is locally connected. Moreover, one gets:

πn(BG, e) =

G n = 1,

∗ n ̸= 1.

In other words, the k-space BG is a “K(G, 1)”.

2.1.5. Associated homotopy category. — As in Illusie (1971, Def. 2.3.5), one intro-
duces(14):

Definition 2.7. — We define the Nisnevich homotopy category HNis(k) (resp. Nis-
nevich pointed homotopy category HNis

∗ (k)) as the localization of the category of k-spaces
(resp. pointed k-spaces) with respect to the local weak equivalences.

Morphisms between two k-spaces X and Y in HNis(k) are simply called weak homotopy
classes and denoted by

[X ,Y ]Nis := HomHNis
∗ (k)(X ,Y).

We similarly denote by [(X , x), (Y , y)]Nis
• in the pointed case.

Example 2.8. — 1. Let X and Y be two smooth k-schemes. Then the canonical map
Homk(X, Y )→ [X, Y ]Nis is a bijection, reflecting the fact that X and Y are discrete
k-spaces. In particular, local weak equivalences are insensitive to the geometry of
the underlying smooth k-schemes. For n > 0, we further get:

[Sn ∧X+, Y+]Nis = ∗.
(14)see also op. cit. Th. 2.3.6 for an equivalent construction using Gabriel-Zisman calculus of fractions
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2. Let G be a smooth group scheme over k. Then for any smooth k-scheme X and
any integer n ≥ 0, one gets using the notation from 2.2:

[Sn ∧X+, BG]Nis =


H1

Nis(X, G) n = 0,

G(X) n = 1,

0 n > 1.

On the first line, the right-hand side denotes the set of Nisnevich-local G-torsors
on X. The second point can be reformulated by saying that ΩBG = G, where Ω
is the loop space functor extended to k-spaces. We refer the reader to Morel and
Voevodsky (1999, p. 120) for more details.

Remark 2.9. — In the homotopy category HNis(k), one can always identify a simplicial
presheaf X with its associated Nisnevich sheaf a(X ). Indeed, the canonical map

X → a(X )
is readily seen to be a local weak equivalence. This justifies our choice to refer to a
k-space as a simplicial presheaf, although the reader is free to work simplicial (Nisnevich)
sheaves instead — a choice that was in fact adopted in Morel and Voevodsky (1999).

2.1.6. Computational tools. — As mentioned in Section 1.4, one can enhance the
homotopy category HNis(k) with several model category structures,(15) and a canonical
∞-categorical structure simply denoted here by H Nis(k), encompassing in the general
notion of∞-topos; see 2.1.7 below. One of the advantages of these structures is to allow
the definition of a (Nisnevich-local) mapping space between k-spaces (resp. pointed
k-spaces) X and Y :

MapNis(X ,Y) resp. MapNis
• (X ,Y).

It has the important property that:
π0 MapNis(X ,Y) = [X ,Y ]Nis resp. πi MapNis

• (X ,Y) = [Si ∧ X ,Y ]Nis
• .

Remark 2.10. — 1. From the model category perspective, the mapping space is ob-
tained by deriving an appropriate basic mapping space functor.(16) For example,

(15) One can retain two such model structures:
– The Joyal model structure, equivalently injective Nisnevich-local model structure used by Morel

and Voevodsky: the base category is that of k-spaces that are Nisnevich sheaves, cofibrations are
monomorphisms, weak equivalence are local weak equivalences, and fibrations are the maps with
the RLP with respect to the acyclic cofibrations.

– The Blander model structure, equivalently Nisnevich-localized projective model structure first
considered in Blander, 2001 in this context: the base category is that of k-spaces, cofibrations
are the maps with the LLP with respect to epimorphisms that are term-wise weak-equivalences,
fibrations are the maps with the LLP with respect to the acyclic cofibrations.

The advantage of the second model structure is that all representable k-spaces are cofibrant and a
k-space is fibrant if and only if it is term-wise a Kan complex and is Nisnevich excisive in the sense of
Definition 2.11.
(16)One says that the model category is simplicial, see Quillen, 1967, II.2, Definition 2.
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with Morel and Voevodsky’s notation, one puts for any k-spaces X and Y

MapNis(X ,Y) = S(Xc,Yf )

where Xc (resp. Yf ) is a cofibrant (resp. fibrant) resolution of the sheaf associated
with X (resp. Y) for the Nisnevich local injective model structure that they use.

2. From the ∞-categorical perspective, the mapping space comes readily out of the
∞-categorical structure (as explained in Section 1.4.2). Moreover, we can view
the ∞-category H Nis(k) as a simplicial category (as any ∞-category, see Cisinski,
2016, §12, Th. 12.4).

Definition 2.11. — Let X be a k-space. After Morel and Voevodsky, we say that X
is Nisnevich excisive(17) if X (∅) is contractible(18) and for any distinguished square ∆
as in Section 1.3.2, the resulting square of simplicial sets

X (X)
p∗
//

j∗
��

X (V )
��

X (U) // X (W )

is homotopy cartesian (i.e., cartesian in the ∞-category H ).

This is a kind of “homotopical excision property”.(19) It was first considered by Brown
and Gersten, but for the Zariski topology (i.e., V → X is an open immersion). In
practice, it is mostly used by applying the following proposition.

Proposition 2.12. — Let X be a k-space which is Nisnevich excisive. Then for any
smooth k-scheme X, the canonical map

X (X)→ MapNis(X,X )

is a weak equivalence. In particular,

[X,X ]Nis = π0
(
X (X)

)
and when X is pointed,

[Si ∧X+,X ]Nis
• = πi

(
X (X)

)
.

Proof. — This can be derived from the Blander model structure on k-spaces mentioned
in footnote 15 (use Blander, 2001, Theorem 1.6, Lemmas 1.8 and 4.1). For an ∞-
categorical proof, we refer the reader to Lurie (2011, Th. 2.9).

(17)Morel and Voevodsky originally used the term “B.G.-property”, which appears to have been replaced
in later literature by the terminology adopted here;
(18)This will be automatic if X is a Nisnevich sheaf.
(19)For example, one can interpret it by saying that the induced map on the homotopy fibers of the
vertical map with respect to any choice of base point in X (W ) is a weak equivalence. Indeed, these
homotopy fibers are respectively the derived sections of X at X with support in (X − U) and at V

with support in (V −W ).
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Example 2.13. — 1. Let X be an eventually singular k-scheme. The associated k-
space X(−) is obviously Nisnevich excisive, as it is a Nisnevich sheaf.

2. Given a k-space X , the Godement resolution provides a weak equivalence X →
G(X ), where the target is a Nisnevich excisive k-space (see Jardine, 2015, Prop. 3.3
or Morel and Voevodsky, 1999, §1, 1.66). We call G the Godement simplicial
resolution functor.

2.1.7. The ∞-categorical description. — We can restate the previous constructions in
light of the tools from higher category theory. The category HNis(k) is the homotopy
category associated with the ∞-topos H Nis(k) of Nisnevich sheaves over Smk.

Let us recall the construction of the latter. We start from the∞-category of presheaves
on Smk, PS h(Smk) = Fun((Smk)op, S ) (see Cisinski, 2016, §14). The objects of this
category are genuinely k-spaces in the sense introduced earlier; the only difference from
the ordinary category PSh(k) is the presence of higher morphisms.(20) The ∞-category
H Nis(k) is obtained by left localization with respect to local weak equivalences as
defined above. In particular, we have a notion of local objects — these are simply called
(∞-)sheaves — and a localization endofunctor LNis of PS h(k). In fact, a k-space X is
local if and only if it is Nisnevich excisive. An explicit model of the localization functor
LNis is given by the Godement simplicial functor described above.

Note finally that we can formulate the excision property in H Nis(k) by saying that
any distinguished square ∆ induces a homotopy cartesian(21) square in H Nis(k). This
amounts to say that the canonical map

V//W → X//U

is a local weak equivalence, i.e., an isomorphism in the ∞-category H Nis(k). Here we
have denoted by X//U the homotopy cofiber(22) of the map U → X.

2.2. The A1-localization

Having prepared the ground in the preceding sections, we can now apply Voevodsky’s
main idea of using the affine line as an interval for doing homotopy with algebraic
varieties over k.

Definition 2.14. — A k-space X will be called A1-local if for any smooth k-scheme U ,
the following map of spaces induced by the obvious projection is a weak equivalence:

p∗ : MapNis(U,X )→ MapNis(A1
U ,X ).

(20)Recall that there is an ∞-functor N PSh(k)→PS h(k), allowing us to view (ordinary) morphisms
of k-spaces as 1-morphisms in PS h(k).
(21)This really means cartesian in the ∞-categorical sense. We use this expression to avoid possible
confusions with the same notion in the underlying category of simplicial sheaves
(22)This really means the quotient/cokernel in the ∞-categorical sense. The same remark as in the
previous footnote is in order: we use this expression to avoid possible confusions.
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We say that a morphism of k-spaces f : Y → X is a weak A1-equivalence if for any
A1-local k-space Z, the following map of spaces is a weak equivalence:

f ∗ : MapNis(X ,Z)→ MapNis(Y ,Z).

We define the A1-homotopy category H(k) over k as the localization of the (Nisnevich)
homotopy category HNis(k) of k-spaces with respect to weak A1-equivalences. One also
denotes by

[X ,Y ]A1

the morphisms in H(k), called weak A1-homotopy classes. One defines similarly the
corresponding pointed category, denoted by H•(k).

This definition follows the classical pattern of left Bousfield localization.(23) In partic-
ular, weak A1-equivalences are exactly the morphisms of k-spaces that become isomor-
phisms in the motivic homotopy category H(k). It is clear that naive A1-equivalences
(Definition 1.1) are a special case. We will see in Example 2.36 that this inclusion is
strict.

Example 2.15. — A1-Local objects. One considers the notation of Example 2.8.

1. Let X be a smooth k-scheme. One says that X is A1-rigid if the associated k-space
is A1-invariant: for any smooth k-scheme Y , the application

Hom(Y, X)→ Hom(A1
Y , X)

is a bijection. Canonical examples are: Gm, abelian varieties, smooth proper
curves.

If the k-scheme X is A1-rigid, one deduces that the k-space X is A1-local —
use Example 2.8(1). One further deduces that for any smooth k-scheme Y , the
following canonical application is a bijection:

Hom(Y, X)→ [Y, X]A1
.

In particular, the A1-rigid smooth k-schemes are discrete from the point of view
of motivic homotopy: A1-weak equivalences between them are exactly the isomor-
phisms of k-schemes.

2. A more interesting example of an A1-local k-space is provided by the classifying
k-space BGm associated with the multiplicative group. This follows from the above
definition and Example 2.8(2), and yields the computation

[Sn ∧X+, BGm] =


Pic(X) n = 0
O(X)× n = 1
0 n > 1.

(23)This is presented in abstract terms in 1.4.3.
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The attentive reader will recognize familiar motivic cohomology groups.
In fact, BGm is the first example of a motivic Eilenberg-MacLane space:
BGm = K(Z(1), 1).

2.2.1. Computational tools. — As explained in Section 1.4, the motivic homotopy cat-
egory admits the A1-localized versions of the adequate model structures on k-spaces.(24)

It also admits a canonical ∞-categorical structure denoted by H (k): one considers the
localization of the Nisnevich ∞-topos with respect to weak A1-equivalences. Using any
of these enhancements, one deduces the definition of an A1-local mapping space simply
denoted by MapA1(X ,Y). One gets:

[X ,Y ]A1 = π0 MapA1(X ,Y).

Moreover, the following principles hold:

– A morphism between A1-local k-spaces is a weak A1-equivalence if and only if it
is a local weak equivalence (in the sense of Definition 2.3).

– For any k-space X , there exists an A1-local k-space LA1X and a weak A1-
equivalence X → LA1X (which can even be chosen functorially in the model
category case).

Except for the last statement, these principles follow from the general procedure of
localization in higher categories (see 1.4.3).

Remark 2.16. — In fact, Morel and Voevodsky provide a more concrete construction
of the A1-localization functor using the functor SingA1

∗ of “Suslin’s singular chains” (see
Morel and Voevodsky, 1999, Lem. 3.20, with the addition that for Nisnevich sheaves
on Smk, one may take the countable cardinal).

(24)Let us be explicit and extend footnote 15 page 15. One defines two model structures whose homotopy
category is H(k):

– The A1-localized Joyal model structure: the base category is that of k-spaces that are Nisnevich
sheaves, cofibrations are monomorphisms, weak equivalences are weak A1-equivalences, and
fibrations are the maps with the RLP with respect to the A1-acyclic cofibrations.

– The A1-localized Blander model structure: the base category is that of k-spaces, cofibrations are
the maps with the LLP with respect to epimorphisms that are term-wise Nisnevich-local weak-
equivalences, fibrations are the maps with the RLP with respect to the A1-acyclic cofibrations.

The first model structure is the one used in Morel and Voevodsky (1999), and in most of the works
on motivic homotopy categories. The second model structure has the advantage that representable k-
spaces are cofibrant objects, fibrant k-spaces are k-spaces (simplicial presheaves) X which are Nisnevich
excisive, termwise Kan complexes, and such that X (X) → X (A1

X) are weak equivalences (of Kan
complexes) for each smooth k-scheme X. Also, the two pairs of adjoint functors, (f∗, f∗) and (p♯, p∗)
for p smooth, that appear on S-spaces when one works with a scheme instead of a field are Quillen
adjunctions for the second model structure, but not for the first one.
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2.2.2. Realizations. — We consider the notation of Section 1.1.
We first consider a complex embedding σ : k → C. Then the canonical functor

X 7→ Xσ(C) with values in topological spaces, admits a canonical extension to k-spaces.
It can be shown following either Dugger and Isaksen (2004, §5.1), or Panin, Pimenov,
and Röndigs (2009, §A.4) that it sends weak A1-equivalences to weak equivalences of
topological spaces, therefore inducing an ∞-functor called the σ-realization functor, or
complex realization when σ is clear:

ρσ : H (k)→H

For σ = IdC, we simply write ρC.
Next we consider a real embedding σ : k → R. Given a smooth k-scheme, instead

of looking at the real points Xσ(R), it is more accurate to look at the complex points
Xσ(C) with the canonical action νσ

X of Z/2 = Gal(C/R). The canonical functor X 7→
(Xσ(C), νσ

X) from smooth k-schemes to Z/2-equivariant topological spaces also admits a
canonical extension to k-spaces, and one shows this extension maps weak A1-equivalences
to weak equivalences of Z/2-equivariant topological spaces (see Dugger and Isaksen,
2004, Th. 5.5). One deduces the equivariant σ-realization functor :

ρZ/2
σ : H (k)→H Z/2

Taking Z/2-homotopy fixed points then induces the σ-realization functor:

ρσ : H (k)→H .

In particular, for a smooth k-scheme X, one gets: ρσ(X) = X(C)hZ/2 = X(R). When
σ is clear, one simply uses the terminology “equivariant real” and “real realization”.

Example 2.17. — As expected, a smooth k-scheme X is said to be A1-contractible if its
structural morphism p is a weak A1-equivalence.

The study of this particular kind of varieties has been a rich question, started by
Asok and Doran (2007) in their pioneering work. There are many interesting families of
A1-contractible smooth algebraic varieties. We refer the interested reader to Asok and
Østvær (2021). Let us mention a few examples:

1. Open varieties in quadrics: Consider the affine quadric

Q2n :
{∑

i

xiyi = z(1 + z)
}
⊂ A2n+1

and the closed subvariety

En : {x1 = · · · = xn = 0, z = −1} ⊂ Q2n.

Then it was shown by Asok, Doran, and Fasel (2017, §3.1) that for all integers
n ≥ 1, Xn = Q2n − En is a quasi-affine smooth k-variety which is A1-contractible,
but not a unipotent quotient of an affine space for n ≥ 3.(25)

(25)This works not only over an arbitrary field k, but even over an arbitrary base.
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2. Koras–Russell 3-fold of the first kind: they are smooth affine hypersurfaces defined
by an equation of the form:

Km,r,s : {xmz = yr + ts + x} ⊂ A4
C

where m, r, s ≥ 2, and r and s are coprime. These complex algebraic varieties are
known to be topologically contractible, non isomorphic to A3

C. Dubouloz and Fasel
(2018) proved they are A1-contractible, even working over any characteristic 0
field k.

Given the realization functors defined in 2.2.2, it is known that an A1-contractible
smooth k-variety is topologically contractible for all complex and real embeddings of
the base field k. One may naturally ask whether the converse holds. This question was
resolved in Choudhury and Roy (2024, Th. 1.1).

Theorem 2.18. — Let X be a smooth affine algebraic surface over a field k of charac-
teristic 0. Then X is A1-contractible if and only if X is isomorphic to A2

k.

It follows that there are smooth affine complex algebraic surfaces which are topolog-
ically contractible but not A1-contractible: one can consider either a tom Dieck-Petri
surface or the Ramanujam surface (see op. cit. after Th. 1.2).

Remark 2.19. — Note that this implies that, even when restricted to the subcategory of
compact objects, the complex realization functor with source H(C) is not conservative.
This is in contrast with Beilinson’s well-known conservativity conjecture for constructible
rational mixed motives.

Example 2.20 (Motivic spheres and Thom spaces). — We will always assume that P1
k

(resp. Gm, An − {0}) is pointed by ∞ (resp. 1, (0, . . . , 0, 1)). Given a vector bundle V

over a smooth k-scheme, one defines the Thom (k-)space of V as the quotient(26)

Th(V ) := V/V ×

where V × → V is the open immersion of the complement of the zero section.
Then one obtains the following computations in the pointed motivic homotopy cate-

gory H•(k):

– P1 ≃ S1 ∧Gm

– An − {0} ≃ Sn−1 ∧Gn
m

– Th(An
k) ≃ (P1)∧,n

– Q2n−1 ≃ Sn−1 ∧G∧,n
m

– Q2n ≃ Sn ∧G∧,n
m

(26)the base point is given by the canonical map ∗ = V ×/V × → Th(V )
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The first three isomorphisms are good exercises.(27) The last two isomorphisms are
due to Asok, Doran, and Fasel (2017, Th. 2/2.2.5). The reader can now check, from
the table in Section 1.1, that all these computations are compatible with the real and
complex realizations as defined in 2.2.2.

Example 2.21. — Let us finish with a more advanced example. Assume our base field k

is algebraically closed field of characteristic 0. Given an integer n > 0 and a separable
polynomial P (z) of degree d > 0, the associated Danielewski surface is defined as the
affine hypersurface

Dn,P : xny = P (z) ⊂ A3
k.

It was shown by Danielewski and Fieseler (see Dubouloz, 2005) that Dn,P is a Zariski-
local torsor under a line bundle over the affine line with a d-fold origin. This implies
that the associated k-space has the motivic homotopy type of a wedge(28) of spheres:

Dn,P ≃ (P1
k)∨,d.

2.3. A1-homotopy sheaves
As in topology, one can encode weak A1-equivalences via the appropriate notion of

homotopy groups — or rather homotopy sheaves, as in Section 2.1.4.

Definition 2.22. — Let X be a k-space. One defines its sheaf of A1-connected com-
ponents πA1

0 (X ) as the (Nisnevich) sheaf of sets on Smk associated with the presheaf:

V 7→ [V,X ]A1
.

Assume that X is pointed. Then one defines for any integer n > 0 the n-th A1-homotopy
sheaf πA1

n (X ) associated with X as the sheaf associated with the presheaf:

V 7→ [Sn ∧ V+,X ]A1

• .

The properties of the A1-localization functor imply the following important formula,
for any n ≥ 0:
(2.22.a) πA1

n (X ) = πn(LA1X )
where the right-hand side sheaf was defined in Section 2.1.4.

Example 2.23. — Loop spaces.– We recalled the definition of the smash product on
pointed k-spaces; in Section 2.1.2. This operation corresponds to a closed monoidal;
structure on the homotopy category H•(k).

In particular, one gets an internal pointed hom functor, and one can define several
loop k-spaces, associated with our different motivic spheres:

– simplicial: ΩS1 = Hom•(S1,−);
– Gm-loops: ΩGm = Hom•(Gm,−);
– P1-loops: ΩP1 = Hom•(P1

k,−).

(27)Hint: use the excision property and the A1-contractibility of An.
(28)see Section 2.1.2;
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We can iterate as usual these constructions. It follows formally that:

πA1

n (X ) ≃ πA1

0 (Ωn
S1X ).

Then it can be shown as in topology that ΩS1X has an h-group structure: this gives
another proof for the fact that πA1

1 (X ) is a sheaf of groups. As is classical in topology,
one also deduces that for n > 1, the sheaf πA1

n (X ) has two compatible group structures
hence is abelian.

Let us also finally mention that one deduces from Example 2.20 the identity ΩP1 =
ΩS1ΩGm . In particular, any P1-loop space has an h-group structure.

Remark 2.24. — As is typical in homotopy theory, it is crucial that the closed monoidal
structure on H•(k) corresponding to the smash product exists at the model or ∞-
categorical level (see also Section 1.4.4). First, this is the only way to get such a
structure on the homotopy category. Second, it will be used to define the stable motivic
homotopy category in Section 3. For the explicit construction in the∞-categorical case,
we refer the reader to Robalo (2015, §2.4.2).

Definition 2.25. — Let n ≥ 0 be an integer and X be a k-space, pointed if n > 0.
One says that X is n-A1-connected if for any 0 ≤ i ≤ n, we have πA1

i (X ) = ∗. We
say A1-connected for 0-A1-connected and simply A1-connected for 1-A1-connected.

Example 2.26. — One easily deduces from Example 2.15 the following computations.

1. Let X be a smooth k-scheme. Then the following conditions are equivalent:
(i) X is A1-rigid.
(ii) The canonical morphism of sheaves X → π0(X) is an isomorphism.

In this case, one also deduces that for any base point x ∈ X(k) and any n > 0,
πA1

n (X, x) = ∗.
2. πA1

n (BGm) = Gm if n = 1, and ∗ otherwise. This correctly reflects Example 2.15(2).
3. Following Morel, one says that a sheaf of groups G is strongly A1-invariant if for

any smooth k-scheme X, both maps

G(X)→ G(A1
X) and H1(X,G)→ H1(A1

X ,G)

are isomorphisms. On the right-hand side, we considered pointed sets of isomor-
phisms classes of Nisnevich-local G-torsors on X.

One can check that the following properties are equivalent:
(a) G is strongly A1-invariant.
(b) The k-space BG (see Example 2.2) is A1-local.

As in the case of Gm, when these properties hold, one gets: πA1
n (BG) = G if n = 1,

and ∗ otherwise.
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2.3.1. Unramified sheaves. — To state the next theorem we introduce the following
terminology, based on classical considerations but due to Morel. Let F be a Zariski
sheaf of sets on Smk. Given a smooth k-scheme X and a point x ∈ X, we let

(2.26.a) F (OX,x) = lim−→
x∈U⊂X

F (U)

be the Zariski fiber of F over X at the point x. When x is a generic point with residue
field E, we let F (E) = F (OX,x).

Let us assume that for any dense open immersion j : U → X of smooth k-schemes,
the induced morphism F (X) → F (U) is injective. Then when X is connected with
function field E, the set F (U), and similarly F (OX,x) for any x ∈ X, can be identified
with a subset of F (E). Using this identification, we say that F is unramified when in
addition to the preceding condition we have for any connected smooth k-scheme X

F (X) =
⋂

x∈X(1)

F (OX,x),

where the intersection runs over the set X(1) of points of codimension 1 in X.
Examples of unramified abelian sheaves come from Bloch–Ogus theory (Bloch and

Ogus, 1974, Th. 4.2), and also from Voevodsky’s theory of homotopy invariant Zariski
sheaves with transfers (see Mazza, Voevodsky, and Weibel, 2006, Th. 24.11). The
following fundamental structure theorem is due to Morel, inspired by the latter example.

Theorem 2.27. — Let X be a pointed k-space.

1. The sheaf of groups πA1
1 (X ) over Smk is unramified and strongly A1-invariant.

2. Assume the field k is perfect. Then for any n > 1, the sheaf of abelian groups
πA1

n (X ) is unramified and strictly A1-invariant: it has A1-invariant cohomology.

This theorem is due to Morel (2012): point (1) is Theorem 6.1, and point (2) would
follow from Theorem 5.46. We warn the reader that the proof of the latter contains an
as yet unproved claim.(29) However, two alternative proofs, heavily based on loc. cit.
but which avoid the problem, are given by Bachmann (2024, Th. 1.6, Cor. 1.8) and by
Ayoub (2022).

(29)This problem was raised by Niels Feld. Here is a detailed summary where, unless explicitly stated,
references concern Morel (2012):

1. The existence of well-defined transfers on strongly A1-invariant sheaves F is only proven on those
of the form F = M−2 (Theorem 4.27, see Feld, 2021a, Th. 5/6.1.5 for a more precise statement),
but claimed to exist on sheaves of the form F = M−1 in Remark 4.31;

2. Corollary 5.30 uses the existence of transfers on M−1, via its reference to Theorem 5.26;
3. Theorem 5.31 uses Corollary 5.30 which cannot be applied in codimension 1.

By constrast, the proof of Tom Bachmann reduces Theorem 5.30 to the case of P1
S and then uses a

well-defined pushforward for the projection P1
S → S.
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2.3.2. Gersten resolutions. — Assume that the base field k is perfect. It is well-
known from Colliot-Thélène, Hoobler, and Kahn (1997) that the strict A1-invariance of
F = πA1

n (X ), n > 1, implies that F admits a Gersten resolution.(30) In particular, both
Zariski and Nisnevich cohomologies of a smooth k-scheme X with coefficients in F can
be computed in terms of the associated Gersten complex.(31) In the case of sheaves of
the form F = πA1

n (X ), the Gersten complex of a smooth k-scheme X with coefficients
in F even takes the following simpler form and is called the Rost–Schmid complex after
Morel (2012, Chap. 5):

(2.27.a)
⊕

x∈X(0)

F (κ(x))→
⊕

x∈X(1)

F−1(κ(x)){νx} → · · · →
⊕

x∈X(d)

F−d(κ(x)){νx}

with the following notation:
1. d is the dimension of X;
2. X(i) denotes the set of points of codimension i in X;
3. F−1 is Voevodsky’s (-1)-construction, or simply contraction the contraction of F :

F−1(X) is the cokernel of the split monomorphism F (Gm×X) s∗
1−→ F (X), and F−n

is the n-th iterated application of the (−1)-construction;
4. we have used notation (2.26.a) for the sheaf F−n, with κ(x) being the residue field

of x in X;
5. νx is the determinant of the conormal sheaf of the regular closed immersion x→

X(x) = Spec(OX,x);
6. given an invertible line bundle L over X, L× being the subsheaf complementary

of the zero section, we have adopted the following notation after Morel:

F−n(X){L} = F−n(X)⊗Z[Gm(X)] Z[L×(X)]

using the natural action of Gm on F−n and on L×.
In fact, the core argument of the previous theorem is to show that a strongly A1-
invariant sheaf of abelian groups F admits a Gersten resolution. This in turn implies
the A1-invariance of all its cohomology sheaves.

For a systematic treatment of Rost–Schmid complexes, in the style of cycle modules
defined by Rost (1996), we refer the reader to Feld (2020).

Example 2.28. — For the time of writing, the structure of the sheaf of A1-connected
components πA1

0 (X ) remains mysterious. We know it is not A1-invariant because of a
counter-example due to Ayoub (2023). However, for an h-group X (same definition as

(30)Note that the correct terminology should be “Gersten property” as it will be recalled in the next
footnote that the Gersten resolution of F , if it exists, is uniquely determined up to unique is omorphism.
(31)Another way of stating this is that the restriction F |XZar to the small Zariski site of X is Cohen-
Macaulay in the sense of Hartshorne (1966, Def. p. 238). Then the Gersten complex restricted to XZar is
the associated Cousin complex. In particular, this complex is unique up to unique isomorphism thanks
to Hartshorne (1966, Prop. 2.3). These considerations can be extended to the Nisnevich topology.
See Déglise, Feld, and Jin (2022, §4.3), and also Druzhinin, Kolderup, and Østvær (2024) for further
developments.
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in topology), the sheaf πA1
0 (X ) is unramified and A1-invariant, as proved by Choudhury

(2014, Th. 4.18).(32)

Moreover, several fundamental computations in this setting were first established in
the seminal work of Asok and Morel (2011). Let X be a smooth proper k-scheme over
a perfect field k. Applying loc. cit. Theorem 6.2.1 and Proposition 6.2.6 (taking into
account Remark 2.2.3), one gets a canonical bijection for any function field E/k:

(2.28.a) X(E)/R
∼−−→ πA1

0 (X)(E)

where (−/R) denotes the quotient by Manin’s R-equivalence relation. This is enough
to deduce that if the left-hand side is trivial for any E/k,(33) then X is A1-connected —
apply Proposition 2.2.7 of op. cit.

Moreover, the isomorphism (2.28.a) was extended to the case where E/k is an arbi-
trary function field of characteristic 0, and X = G is a semisimple, simply connected,
isotropic, and absolutely almost simple algebraic group: see Balwe, Hogadi, and Sawant,
2023, Th. 4.2.(34)

Example 2.29. — Let f : X → Y be a morphism of k-spaces. Following Morel (2012,
Definition 7.1, Lemma 7.2), one says that f is an A1-covering if it has the right lifting
property with respect to weak A1-equivalences.(35) For a strongly A1-invariant sheaf
of groups G, any Nisnevich-local G-torsor is an A1-covering: op. cit. Lemma 7.5. An
important theorem of Morel, op. cit. Theorem 7.8, shows that any pointed A1-connected
k-space X admits a universal A1-covering

X̃ → X

where X̃ is simply A1-connected. As in topology, one formally deduces that

πA1

1 (X ) = AutX (X̃ )

where the right-hand side is the sheaf of automorphisms of A1-covers.
As an example, for an integer n > 1, the canonical Gm-torsor

An+1 − {0} → Pn

is in fact the universal A1-covering of Pn. One deduces (op. cit. Theorem 7.13) that, for
any integer n > 1,

πA1

1 (Pn) = Gm.

(32)See the proof p. 51 for the unramified property.
(33)in that case, we can say that X is universally R-trivial. Recall that this is implied by the property
of being retract k-rational or even, universally CH0-trivial;
(34)Recall that in this case, according to Gille (2009, Th. 7.2), the left hand side of (2.28.a) is also
isomorphic to the so called Whitehead group of G over k. In particular, thanks to loc. cit. Theorem 8.1,
when k is a global field, G is A1-connected.
(35)Beware that if we want to give a meaningful ∞-categorical formulation, one really has to consider
f as a map in the Nisnevich ∞-category H Nis(k).
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By contrast, the A1-homotopy sheaf πA1
1 (P1

k) is non-abelian. In fact, it is the free
strictly A1-invariant sheaf of groups generated by the final sheaf of sets ∗ (see op. cit.
Lemma 7.23). We will give a more precise description in Proposition 2.38 below.

2.4. Morel quadratic degree

2.4.1. Milnor–Witt K-theory. — In the theory of motivic complexes, Milnor K-
theory(36) KM

∗ (k) of a field k plays a central role, as the extension algebra between Tate
twists 1(n). In motivic homotopy, we have seen in Cazanave’s Theorem 1.3 that inner
products play a central role, at least visible in the naive A1-endomorphism classes of
the sphere (P1

k,∞).
One of Morel’s key insights in his analysis of motivic homotopy theory over a field

was the introduction of a theory that encompasses both theories into what is now called
the Milnor–Witt K-theory of the field k; see Morel, 2012, §3.1. Morel’s definition of the
corresponding Z-graded ring, denoted by KMW

∗ (k), is by generators and relation:
– Generators: symbols [u] of degree +1 for a unit u ∈ k×, and the Hopf symbol η of

degree −1.
Let us write: [u1, . . . , un] = [u1] · · · [un], ⟨u⟩ = 1 + η.[u], ϵ = −⟨−1⟩, h = 1− ϵ.

– Relations:
(MW1) [u, 1− u] = 0, u ̸= 0, 1;
(MW2) [uv] = [u] + [v] + η[u, v];
(MW3) η[u] = [u]η;
(MW4) ηh = 0.

Morel was inspired by the Milnor conjecture, linking Milnor K-theory and the Witt ring.
This definition indeed realizes the synthesis between these two theories, as seen by the
following computations:

KMW
∗ (k)/(η) = KM

∗ (k)
KMW

∗ (k)[η−1] = W(k)[η, η−1].

See loc. cit.(37) Moreover, one also deduces

KMW
0 (k) = GW(k)

and in degree 0, the projection modulo η induces the rank map:

(2.29.a) GW(k) = KMW
0 (k)→ KMW

0 (k)/(η) = KM
0 (k) = Z.

The following computation is one of the major results of Morel (2012, Cor. 6.43). Recall
that the group scheme Gm is one of our motivic spheres, seen as a pointed k-scheme by
the unit element.

(36)Recall that this is the tensor Z-graded algebra of the Z-module k× modulo the Steinberg relation
{u, 1− u} = u⊗ (1− u) = 0 .
(37)The first computation is easy, and the second one follows from the presentation of W(k) by generators
and relation given in 1.2.3.
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Theorem 2.30. — Consider the above notation. Let n, i, m, j ∈ N be integers such
that n ≥ 2. Then there are canonical isomorphisms:

[Sm ∧G∧j
m , Sn ∧G∧i

m ]A1

• ≃


0 m < n or (m = n, j > 0, i = 0),
Z m = n, j = i = 0,

KMW
i−j (k) (m = n, i > 0).

The proof makes use of the motivic version of the Hurewicz theorem (see Remark 3.7).

Example 2.31. — In fact, one can explicitly identify the generators of the Milnor–
Witt ring with geometrically defined morphisms via the isomorphism appearing in the
preceding theorem. First, a unit u ∈ k× defines a morphism of k-schemes γu : Spec(k)→
Gm, whose weak A1-homotopy class corresponds to the element [u] ∈ KMW

1 (k).
More interestingly, the element η ∈ KMW

−1 (k) is sent to the class of the obvious map

η : A2
k − {0} → P1

k.

We call it the algebraic Hopf map and denote it (abusively) by η. In fact, one can
observe that when k = C, the topological realization of η is precisely the classical Hopf
map S3 → S2.

Another meaningful element for motivic homotopy is the class ρ := [−1] ∈ KMW
1 (k).

We refer the reader to Theorem 3.15 for an illustration.

Remark 2.32. — Let us anticipate what follows by stating how this computation relates
to motivic cohomology. Taking realization in the category of motivic complexes, one
gets a canonical map:

[Sm ∧G∧j
m , Sn ∧G∧i

m ]A1

• → Hn+i−m−j,i−j
M (k)

where the right-hand side is the motivic cohomology of the field k. In particular, when
n = m, we get a map

KMW
i−j (k)→ KM

i−j(k)
which is in fact the projection modulo η, and in particular, the rank map (2.29.a) when
i = j. In other words, motivic complexes do not see the quadratic phenomena of motivic
homotopy.

Note also that Morel’s computations do not say anything about the range m > n,
i = j, which in fact corresponds to the range of the Beilinson–Soulé vanishing conjecture
in motivic cohomology.

One of the main applications indicated by Morel is a notion of degree in motivic
homotopy analogous to the Brouwer degree. We will call it the Morel degree.

Corollary 2.33. — Consider an integer n ≥ 2. Then there exists isomorphisms of
abelian groups:

[(P1
k)∧n, (P1

k)∧n]A1

• ≃ [An
k − {0},An

k − {0}]A
1

• ≃ GW(k).
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Indeed, the abelian group structure on the first two sets comes from Example 2.20: it is
proved there that both k-spaces (P1

k)∧n and An−{0} are at least a 2-simplicial suspension
of another k-space, except for A2 − {0} which is an h-space.

Example 2.34. — In particular, each pointed endomorphism f of the k-space An − {0}
admits a quadratic degree d̃eg(f) ∈ GW(k). As an example, consider a unit u ∈ k×

and the associated pointed endomorphism fu : (t1, . . . , tn) 7→ (ut1, t2, . . . , tn) of An
k−{0}.

Then d̃eg(fu) = ⟨u⟩ with the notation of Section 1.2.3.
Let us consider a complex embedding σ : k → C. Then a general pointed endomor-

phism f as above induces a pointed continuous map

ρσ(f) : S2n−1 → S2n−1

to which is associated a Brouwer degree. One gets:

rk(d̃eg(f)) = deg(ρσ(f)).

The case of the projective line can also be considered, but it requires more care. This
is the following major theorem, obtained by the joint efforts of Morel and Cazanave. We
refer the reader to Morel (2012, Theorem 7.36) and Cazanave (2012, Theorems 3.22, 4.6)
for the proofs. In addition, it allows to compute both the naive pointed A1-homotopy
classes (Definition 1.2) and the pointed A1-homotopy classes (Definition 2.14) in the
particular case of endomorphisms of the projective line.

Theorem 2.35. — The map (1.2.a) (page 7) induces an isomorphism of rings:

[P1
k,P1

k]A1

•
∼−→ GW(k)×Q(k) k×

where, on the left-hand side, the addition comes from the fact P1
k = S1 ∧ Gm, and the

multiplication is induced by the composition of pointed maps.
In particular, the canonical map

[P1
k,P1

k]N• → [P1
k,P1

k]A1

•

can be interpreted as the canonical morphism to the group completion of the left-hand
side, with its canonical additive monoid structure.

Example 2.36. — When k = C, the rank map gives the following computation:

[P1
k,P1

k]N• = N× C×;

[P1
k,P1

k]A1

• = Z× C×.

When k = R, the signature map gives:

[P1
k,P1

k]N• = (N× N)× R×;

[P1
k,P1

k]A1

• = (Z× Z)× R×.

In fact, whatever the base field k is, naive A1-homotopy classes and weak A1-homotopy
classes of endomorphisms of the pointed k-space P1

k do not coincide.
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2.4.2. Unramified Milnor–Witt K-theory and A1-homotopy sheaves. — Recall that the
n-th unramified Milnor K-theory of a smooth connected k-scheme X with function
field E is defined as the kernel:

KM
n (X) = Ker

(
KM

n (E) d−→ ⊕x∈X(1)KM
n−1(κ(x))

)
where d is the sum of the residue maps associated with the discrete valuation vx on E

of a codimension 1 point x ∈ X. This defines an unramified and strictly A1-invariant
(see e.g. Section 2.3.1) abelian Nisnevich sheaf KM

n on Smk (see Déglise, 2006, Prop. 6.9
applied to the cycle module KM

∗ ).
Similarly, one can define following Morel the n-th unramified Milnor–Witt K-theory

of a smooth k-scheme X as the kernel:

KMW
n (X) = Ker

(
KMW

n (E) d−→ ⊕x∈X(1)KMW
n−1(κ(x)){νx}

)
where d is again the sum of some residue maps — we have used the notation of Section
2.3.2. Again KMW

n is an abelian unramified and strictly A1-invariant Nisnevich sheaf on
Smk (see Morel, 2012, §3.2, or apply Feld, 2021b, Theorem 4.1.7 to the Milnor–Witt
cycle module KMW

∗ ). These considerations allow one to state the previous computations
in terms of homotopy sheaves. Here is a fundamental example.

Example 2.37. — For n ≥ 2, we can now give more meaning to the assertion that
An − {0} is a motivic sphere, suggested in Section 1.1. In fact, Theorem 2.30 implies it
is (n− 1)-A1-connected in the sense of Definition 2.25, which is reflected by its complex
realization. Moreover, one can deduce from Corollary 2.33 (or see directly Morel, 2012,
Rem. 6.42) that its first non-trivial homotopy sheaf is

πA1

n−1(An − {0}) = KMW
n .

The same result hold for (P1)∧,n.

We end up this section with a beautiful computation, again due to Morel, that we
state separately.

Proposition 2.38. — There exists a weak A1-equivalence of k-spaces:

BGm ≃ P∞
k = lim−→

n∈N
Pn

k .

Moreover, the obvious sequence of k-spaces:

(A2 − {0})→ P1
k

p−→ P∞
k

is an A1-fiber sequence, in the sense that the first k-space is the homotopy fiber of
the map p. Applying the functor πA1

1 , one deduces a short exact sequence of strongly
A1-invariant sheaves of groups:

0→ KMW
2 → πA1

1 (P1
k)→ Gm → 0.

This is in fact a central extension.
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We have applied the previous example for the first sheaf and Example 2.26 for the
third one. For the rest, see Morel, 2012, Theorem 7.29 taking into account Lemma 7.23
and the remark that follows the proof.

2.5. K-theory and vector bundles

We have already seen with the case of the Picard group how classifying spaces can be
used in motivic homotopy. In the case of vector bundles of higher rank, the situation
is more complex. Essentially by definition, it is clear that the (Nisnevich) classifying
space BGL of the infinite general linear group classifies vector bundles in the simplicial
homotopy category, as in topology. This basic fact can be extended to motivic homotopy
in several directions. We will start by looking at the higher K-theory groups as defined by
Quillen. Here the situation is exceptionally nice, and we have the following fundamental
result of Morel and Voevodsky. See Morel and Voevodsky, 1999, §4, Th. 3.13.(38)

Theorem 2.39. — For any smooth k-scheme X and any pair of non-negative integers
(n, i), there exists an isomorphism, natural in X with respect to pullbacks:

[Sn ∧ (P1
k)∧i ∧X+,Z× BGL]A1

• ≃ Kn(X)

where Z × BGL is the product of the discrete k-space Z with the classifying space of
the infinite general linear group, with base point given by the canonical base point of
{0} × BGL.

This result uses many of the good properties of Quillen’s higher K-theory: its presen-
tation via the Q-construction, its A1-invariance over regular schemes also due to Quillen,
Thomason-Trobaugh’s Nisnevich descent theorem and lastly its P1-periodicity property
(see loc. cit. for details).

On the other hand, the output is truly remarkable as K-theory is representable by
a very simple k-space, Z × BGL, which is in some sense the group completion of the
h-monoid ⊔nBGLn (see loc. cit. for more details).

Moreover, one directly reads off the above computation the following form of the
classical (Bott) P1-periodicity property of algebraic K-theory:

β : ΩP1
k
(Z× BGL) ≃ Z× BGL

where the P1-loop space was defined in Example 2.23. In particular, Z × BGL has a
structure of infinite P1-loop space, which also gives a structure of infinite simplicial loop
space. This gives the commutative h-group structure on the motivic pointed k-space
Z × BGL, which is compatible with the abelian group structure on K-theory via the
above isomorphism.

(38)Beware that there is a gap in the proof of Morel and Voevodsky that was found by Schlichting and
Tripathi (2015, Remark 8.5). It can be fixed by applying Theorem 8.2 of op. cit.
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Example 2.40. — In his PhD thesis, Riou (2010) used the above representability result to
deduce that all operations (λ-operations, Adams operations, products) on the functor K0
lift to operations on the k-space Z× BGL seen in the A1-homotopy category H(k).

2.5.1. Symmetric vector bundles and classifying spaces. — From what we have already
seen, inner products and quadratic invariants are central in motivic homotopy theory,
in particular via the Grothendieck–Witt group of a field. In fact, it is classical that
symmetric vector bundles over a field, or more generally a scheme, can be viewed as
torsors under the infinite orthogonal group O. However this interpretation is only true
étale locally — indeed Nisnevich torsors over a field are trivial. Thus the (Nisnevich)
classifying space BO that was introduced in Example 2.2 is not adapted for this study.
However, it is possible to define another k-space

BétO = LétBO

that represents étale local torsors in the simplicial Nisnevich category: it is the local-
ization of BO with respect to étale hypercovers.(39) By construction, we have for any
smooth k-scheme X an isomorphism in the homotopy category HNis(k):

[X, BétO]Nis = H1
ét(X, O).

Note that GW(k) is the group completion of the latter pointed set in the particular
case X = Spec(k), with its natural monoid structure.

2.5.2. Hermitian K-theory. — In fact, one can extend the Grothendieck–Witt groups
of a field along lines similar to those used in K-theory. This is a very rich topic,
which was started independently by Karoubi (hermitian K-theory) and Ranicki (L-
theory). In the next statement, we will use the construction that was finally done by
Hornbostel and Schlichting, at the price of assuming that char(k) ̸= 2.(40) According
to Schlichting (2017), Definition 9.1 (see also Proposition 9.3), given a line bundle
L/X, one defines bigraded higher Grothendieck–Witt groups GW[i]

n (X, L) which are
contravariantly functorial — when L = OX , we just omit it from the notation. They
satisfy analogous properties to Quillen’s K-theory (contravariant, Nisnevich descent, an
appropriate localization property). Here are some important distinctive features:

– Periodicity: there exist isomorphisms: GW[i+4]
n (X) ≃ GW[i]

n (X).
– When X is affine, the abelian group GW[0]

0 (X) (resp. GW[2]
0 (X)) is the Grothendieck

group of vector bundles(41) with a non-degenerate symmetric (resp. symplectic)
bilinear form.(42)

(39)The associated hypercomplete étale sheaf, viewed in the Nisnevich ∞-topos, in the terminology of
Lurie (2009).
(40)In fact, there is now a general construction valid even in characteristic 2 (Calmès, Harpaz, and
Nardin, 2024). See also Example 3.4(4).
(41)equivalently, finite rank locally free OX -module
(42)When X is not affine, one has to take care about the so-called metabolic forms. In general, GW[0]

0 (X)
(resp. GW[2]

0 (X)) does coincide with the definition of Knebusch (1977).
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In particular, GW[0]
0 (k) really is the Grothendieck–Witt group that we have introduced

earlier. Given the two previous definitions, one can state the quadratic analogue of the
previous theorem which is due to Schlichting and Tripathi (2015).

Theorem 2.41. — Let k be a field of characteristic different from 2. Then for any
smooth k-scheme X and any pair of non-negative integers (n, i), there exists an isomor-
phism, natural in X with respect to pullbacks:

[Sn ∧ (P1
k)∧i ∧X+,Z× BétO]A1

• ≃ GW[−i]
n (X)

where Z× BétO is defined as previously.

The proof is similar to that of the preceding theorem. Note that in this setting, the
periodicity theorem now takes the form:

Ω4
P1

k
(Z× BétO) ≃ Z× BétO

which aligns well with the classical topological case.

Remark 2.42. — 1. In addition, to both these representability theorems, one also has
a geometric presentation of the k-space Z× BGL (resp. Z× BétO) by the infinite
grassmannian (resp. the infinite orthogonal grassmannian). See the references
already mentioned in both cases.

2. Though we now have a definition of hermitian K-theory which has all the expected
properties in characteristic 2, thanks to Calmès, Harpaz, and Nardin (2024), the
extension of the previous theorem is not clear at the moment.

2.5.3. Motivic obstruction theory. — If one restricts to a smooth affine k-scheme X,
the two previous statements can be improved: the pointed set of isomorphism classes
of rank n vector bundles over X is represented in the stable homotopy category by the
k-space BGLn. See Morel, 2012, Th. 8.1 for n ̸= 2 and Asok, Hoyois, and Wendt, 2020
for a generalization to torsors over appropriate reductive algebraic goups.

Using this fact, Morel (2012) started a motivic homotopical study of algebraic vector
bundles, modeled on the topological case. He set up a general obstruction theory, based
on an appropriate notion of Postnikov tower on the motivic homotopy category (loc. cit.
Appendix B), and used it (in the case of SLn) to define an Euler class for vector bundles
with trivial determinant which refines the usual top Chern class; loc. cit. Th. 8.14.

As proposed by Morel, this class was later compared by Asok and Fasel to a previous
definition due to Barge and Morel (2000) and related to the so-called Chow-Witt groups,
thoroughly studied in Fasel (2020) and subsequent works. This result also started a
series of works by the two first named authors based on Morel’s obstruction theory,
which culminated in the proof of a conjecture of Murthy in dimension 4:

Over an algebraically closed field of characteristic not 2, a rank 3 vector
bundle over an algebraic smooth affine 4-fold splits off a trivial line bundle
if and only if its third Chern class vanishes.
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See Asok and Fasel, 2015, Theorem 2. In fact, the method used in proving this conjecture
critically rests on the determination of the second non-trivial motivic homotopy sheaf
πA1

n (An − {0}) of the sphere An − {0}, going one degree further than Example 2.37; loc.
cit. Theorem 3.

The authors also highlight a plausible computation of πA1
n (An − {0}), the Asok–Fasel

conjecture, that would solve Murthy’s conjecture in general. For more detail, the reader
is advised to consult the report of Asok and Fasel (2023). We will see an unconditional
stable version of this conjecture in 3.25.

3. Stable motivic homotopy

3.1. The Dold–Kan correspondance
In classical topology, the relations between homotopy and homology are governed by

two main results:
– The Dold–Kan correspondence: it provides an explicit equivalence of categories

between that of simplicial abelian groups and homologically non-negative com-
plexes of abelian groups. This allows us to define an adjunction of homotopy/∞
categories:

Z : H ⇆ D≥0(Ab) : K

where the right-hand side category is the subcategory of the derived ∞-category
of abelian groups made by complexes whose homology is non-negative. The left-
adjoint functor, that we denoted by Z as the (derived) free abelianisation functor,
is really the functor which to a space X associates the complex of singular chains
C∗(X,Z). Its right adjoint K has the classical property that for any abelian
group A, and any integer n ≥ 0,

K(A, n) = K(A[n])
where the left-hand side is the n-th Eilenberg–MacLane space associated with A,
and, on the right-hand side, A[n] denotes the complex with only one non-trivial
term equal to A in homological degree n.(43)

– The Hurewicz theorem: for a simply connected pointed space X, it says that X

is n-connected if and only if the complex Z(X) = C∗(X,Z) is concentrated in
homological degree > n. That is,

(∀i ≤ n, πi(X) = 0)⇔ (∀i ≤ n, Hi(X,Z) = 0)
This picture is beautiful, but incomplete. First, the homotopy category of the right-hand
side is not triangulated; equivalently, the underlying ∞-category is not stable. Each
Eilenberg–MacLane space K(Z, n) only represents a single homology group:
(3.0.a) [X+, K(Z, n)] ≃ Hn(X,Z).

(43)Note that K(A, 0) is simply equal to A with the discrete topology.
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Nevertheless, one can assemble the Eilenberg–MacLane spaces into a spectrum, using
the natural suspension maps:(44)

σn : S1 ∧K(Z, n)→ K(Z, n + 1).

This is the so-called Eilenberg–MacLane spectrum HZ = (K(Z, n), σn)n≥0. Spectra of
this kind are the objects of an∞-category SH , called the stable homotopy category,(45)

which allows us to complete the picture drawn by the Dold–Kan correspondence as
follows:

(3.0.b) H
Z

//

Σ∞

��

D≥0(Ab)

ι

��

K
oo

SH
Z

//

Ω∞

OO

D(Ab).

τ≥0

OO

H
oo

The adjoint pair (Σ∞, Ω∞) is made of the infinite suspension spectrum and infinite loop
space functors. On the right-hand side, τ≥0 is the truncation functor in homological
notations, and ι the obvious inclusion.

One of the fundamental ideas of motivic homotopy, which is certainly the main driving
insight of Voevodsky, is that this picture should exist in algebraic geometry as well.
Moreover, the derived ∞-category of abelian groups would be replaced by the derived
∞-category of motivic complexes whose existence was conjectured by Beilinson. Finally,
motivic cohomology would assume the universal role of singular cohomology.

3.2. P1-stabilization
3.2.1. Stabilization. — The classical stable homotopy category can be obtained along
classical lines with an explicit model category.(46) Here the ∞-categorical framework is
much more efficient. The ∞-category SH actually satisfies two universal properties:

1. It is the universal symmetric monoidal∞-category which is the target of a symmet-
ric monoidal functor with source H which sends the sphere S1 to a ⊗-invertible
object.

2. It is the universal ∞-category with an exact functor with source H • and whose
target is stable as an ∞-category.

The notion of stability in ∞-categories is one of the great advantages of this formalism.
It replaces the more classical notion of triangulated categories in homological algebra.
Strikingly, it is actually a property and not an additional structure. Explicitly, an
∞-category C is stable if it admits all finite limits and colimits. In addition, a square

(44)For example, they come out of the universal property given by the functorial isomorphism (3.0.a),
which gives a unique weak equivalence (isomorphism in∞-categorical terms): ΩK(Z, n+1) = K(Z, n).
(45)We refer the reader (for example) to Lurie (2017, §1.4) for the construction of this ∞-category.
(46)In fact, there are two concurrent model categories in order to get a symmetric monoidal model
category: S-modules after Elmendorf, Kriz and May and symmetric spectra after Hovey, Smith and
Shipley.
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is cartesian if and only if it is cocartesian. These two properties suffice to ensure that
the homotopy category Ho C admits a canonical structure of triangulated category. We
refer the reader to the beautiful and efficient presentation of Lurie (2017, §1.1).(47)

Let us quickly comment on those two constructions. The first one comes from the
classical construction of spectra, recall at the beginning. The general construction,
which consists in adding a ⊗-inverse of an object in a presentable monoidal ∞-category
has been first written down in Robalo (2015, §2.1), to which we refer. The second one
has been obtained in Lurie (2017, §1.4.2): and pointed ∞-category with finite limits
admits a universal stabilization (see loc. cit. for the precise formulation).

As announced earlier, we will follow the same path in motivic homotopy theory. The
main difference is that we have several possible spheres (see Section 1.1) to choose
from when considering the analogue of construction (1). The chosen sphere, guided by
Beilinson’s conjectures on motivic complexes, is the projective line P1

k.

Definition 3.1. — The motivic stable homotopy ∞-category SH (k) over k is the
universal ∞-category obtained from H (k) by tensor-inverting the k-space P1

k. This
construction is called the P1-stabilization. The objects of SH (k) are called motivic
spectra.

In particular, we have a pair of adjoint functors

Σ∞ : H •(k) ⇆ SH (k) : Ω∞

where Σ∞ is a monoidal functor such that Σ∞ P1 is ⊗-invertible.

According to the decomposition of Example 2.20, both spheres S1 and Gm become
⊗-invertible in SH (k). In particular, the ∞-category SH (k) is stable. We use two
conventions for the various powers of spheres:

(3.1.a) Sn,i = 1(i)[n] = (Σ∞ S1)⊗n−i ⊗ (Σ∞ Gm)⊗i.

According to the construction of SH (k) as the countable limit over the P1-loop
space functor ΩP1 of Example 2.23, one deduces for any k-spaces X , Y, the following
computation:

(3.1.b) [Σ∞X+, Σ∞ Y+]SH(k) := lim−→
n

[(P1
k)∧n ∧ X+, (P1

k)∧n ∧ Σ∞ Y+]A1

•

where the left-hand side stands for morphisms in the homotopy category SH(k) =
Ho SH (k). We simply drop the subscript when the context is clear. A morphism of
pointed k-spaces f : X → Y will be called a stable weak A1-equivalence if it becomes an
isomorphism after application of the functor Σ∞. According to the previous computation,
this is equivalent to ask that there exists an integer n > 0 such that (P1

k)∧n ∧ f is a
weak A1-equivalence.

Example 3.2. — 1. Wickelgren (2016) showed that, over the base field Q, Gm ∨Gm

and P1
Q − {0, 1,∞} are stably weakly A1-equivalent but not weakly A1-equivalent.

(47)See Proposition 1.1.3.4 of op. cit. for the definition we have adopted in this paragraph.
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2. A pointed smooth k-scheme X is stably A1-contractible if the structural map
X → Spec(k) is a stable weak A1-equivalence. Hoyois, Krishna, and Østvær (2016)
proved that Koras–Russel threefolds of the second kind, for integer positive integers
m, n, α1, α2, such that α1, α2 ≥ 2, nα1 and α2 are coprime, and a unit a ∈ k×:

Km,n,αi,a := {(xn + yα1)mz = tα2 + ax = 0} ⊂ A4
C

are stably weakly A1-contractible. It is not known whether they are weakly A1-
contractible or not.

According to the decomposition P1
k = S1 ∧Gm, both the spheres S1 and Gm become

invertible in SH (k). This implies that the ∞-category SH (k) is stable, and one can
define on a motivic spectrum E shifts and twists by integers n and i:

E(i)[n] := E⊗ (Σ∞ S1)⊗n−i ⊗ (Σ∞ Gm)⊗i.

Definition 3.3. — Let E be a motivic spectrum over k. One defines the cohomology
of a smooth k-scheme X in bidegree (n, i) represented by E by the formula:

En,i(X) = [Σ∞ X+, E(i)[n]] .

We say that E is a ring spectrum (resp. E∞-ring spectrum) if E admits a commutative
monoid structure in the homotopy category Ho SH (k) (resp. is a commutative monoid
in the monoidal ∞-category SH (k)). In that case, one defines a product on the
cohomology theory represented by E as usual.

All ring spectra appearing in the sequel have in fact a structure of E∞-ring spectra.
In particular, we will say abusively ring spectra for E∞-ring spectra.

Example 3.4. — 1. Classical cohomology theories in algebraic geometry are all repre-
sentable by ring spectra in SH (k): in characteristic 0, integral Betti cohomology
(see also below), algebraic de Rham cohomology in positive characteristic p > 0,
rigid cohomology and in all characteristics integral ℓ-adic étale cohomology (ℓ ∈ k×).
With rational coefficients, all these theories are in fact instances of a mixed Weil
cohomology as defined by Cisinski and Déglise (2012). Their representability is
proved in loc. cit. Prop. 2.1.6, Using the A1-derived category of 3.2.3.

2. Motivic cohomology of smooth k-schemes with integral coefficients is represented
by the so-called Eilenberg–MacLane motivic spectrum HMZ defined by Voevodsky
(1998, §6.1). In particular, one gets a computation in terms of Bloch’s higher Chow
groups:

Hn,i
M (X) = CHi(X, 2i− n).

The construction of Beilinson’s conjectural motivic cohomology theory was in fact
Voevodsky’s main motivation for introducing motivic homotopy theory.(48)

(48)Given an arbitrary ring R, one simply gets the R-linear Eilenberg–MacLane motivic spectrum
HMR by applying Voevodsky’s construction with R-linear finite correspondences, obtained by naively
tensoring with R over Z — using that the groups of finite correspondences are free abelian groups.
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3. Algebraic K-theory (resp. higher Grothendieck–Witt groups) is representable by
a ring spectrum KGL (resp. GW) according to Bachmann and Hoyois (2021,
Th. 15.22) (resp. Calmès, Harpaz, and Nardin, 2024).(49) According to the period-
icity isomorphisms, one has the following canonical identifications:

KGLn,i(X) = K2i−n(X)

GWn,i(X) = GW[i]
2i−n(X).

4. Algebraic cobordism is representable by the Thom spectrum MGL, as first defined
by Voevodsky (1998) (see Bachmann and Hoyois (2021, Th. 16.19) for the E∞-
structure). Levine and Morel (2007) provided a more concrete notion of algebraic
cobordism which was presented in this seminar by Loeser (2003). In characteristic 0,
it was shown by Levine that the latter theory is isomorphic to the Z-graded part
of Voevodsky’s theory: MGL2∗,∗(−). Levine’s argument was conditional on the
Hopkins-Morel theorem, which was proved by Hoyois (2015); see also loc. cit.
Cor. 8.15.

Remark 3.5. — One also find the name hermitian K-theory and the notation KQ for
the ring spectrum GW (see Section 3.4.3). Both notations have their advantages.

3.2.2. Topological realizations. — We consider again the notation of Section 2.2.2.
Then one deduces the following realization:

– Given a complex embedding σ : k → C, one obtains the σ-Betti realization
ρσ : SH (k) → SH , which sends Σ∞ X+ to Σ∞ X(C)+. This is obvious ac-
cording to loc. cit., as the (unstable) realization functor maps the motivic sphere
P1

k to S2. We refer the interested reader to Ayoub (2010) for Betti realizations over
a base complex scheme.

– Let us recall that one defines the genuine stable homotopy category of Z/2-
equivariant homotopy category by ⊗-inverting both the simplicial sphere S1 and
the sphere S1 with the antipodal action of Z/2, usually denoted by Sσ.(50)

Given a real embedding σ : k → R, from the unstable realization attached
to σ, one deduces the σ-Betti equivariant realization ρZ/2

σ : SH (k) → SH Z/2,
which sends Σ∞ X+ to Σ∞ X(C)+ with the action of Z/2 given by the complex
conjugation. We refer the reader to Heller and Ormsby (2018, §4.4) for the explicit
construction.

After taking homotopy fixed points (with respect to Z/2), one deduces the
σ-Betti realization ρσ : SH (k)→ SH , which sends Σ∞ X+ to Σ∞ X(R)+.

(49)The first proof of this representability result (regardless of the E∞-ring structure) was given by
Riou (2010, §5.2), based on Theorem 2.39. For hermitian K-theory, the representability result was first
proved by Hornbostel (2005), in characteristic not 2 and without the ring structure.
(50)The adjective genuine here refers to the fact one has ⊗-inverted both the spheres S1 and Sσ.
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Example 3.6. — In both the complex and real cases, ρσ is monoidal and admits a right
adjoint that we will denote by ρσ∗. When σ is a complex embedding, and fixing an
arbitrary (commutative) ring R, one deduces a motivic ring spectrum:(51)

Hσ
BR := ρσ∗(HR)

which, by the adjunction property, represents the the R-linear Betti cohomology over k

attached to the embedding σ. When σ = IdC, we simply denote by HBR this ring
spectrum.

3.2.3. The A1-derived category. — The Dold–Kan correspondence recalled in Sec-
tion 3.1 easily extends to the motivic setting. One first considers D(Sh(k,Z)), the
derived∞-category of abelian Nisnevich sheaves on Smk.(52) Then one follows the recipe
used to construct the stable motivic homotopy category, replacing X+ by the abelian
sheaf Z(X) represented by a smooth k-scheme X: one considers its A1-localization as in
Definition 2.14, and then its P1-stabilization as in the preceding definition. The result-
ing category is denoted by DA1(k) and called, after Morel, the (P1-stable) A1-derived
category over k. The Dold–Kan correspondence formally extends as an adjunction:

ZA1 : SH (k) ⇆ DA1(k) : HA1 .

Remark 3.7. — One of the main theorems of Morel (2012) that we have not yet discussed,
is the motivic analogue of the Hurewicz theorem, which discusses the properties of the
composite functor H •(k) Σ∞

−−→ SH (k) ZA1−−→ DA1(k). To avoid inflating indefinitely this
presentation, we refer the reader to loc. cit. Section 6.3.

3.2.4. Motivic complexes. — Let k be a perfect field. Voevodsky’s theory of motivic
complexes was exposed in the Bourbaki seminar by Friedlander (1997). For our needs,
we need to consider a slightly bigger category, the “big” derived ∞-category DM (k) of
mixed motives over k. As above, it is obtained by applying the A1-localization and P1-
stabilization procedure to the the monoidal derived ∞-category of the abelian category
of sheaves with transfers over k (loc. cit. Section 2).(53)

Then one can refine the previous Dold–Kan correspondence and introduce the follow-
ing motivic realization functor :

M : SH (k) ZA1−−→ DA1(k)→ DM (k).

(51)the E∞-structure comes for free from the fact the (∞-)functor ρσ∗ is weakly monoidal, as a right
adjoint of a monoidal (∞-)functor;
(52)This can be simply obtained as the localization of the nerve of the category of complexes of such
sheaves with respect to quasi-isomorphisms, but then the monoidal structure is not obvious. A classical
way of constructing this monoidal ∞-category is by using model structures (see e.g. Cisinski and
Déglise, 2009). A more elegant procedure is to identify D(Sh(k,Z)) with the commutative monoid
objects of the Nisnevich∞-topos associated the smooth site Smk, equipped with its cartesian monoidal
structure. Then the desired monoidal structure comes from Lurie (2017, Ex. 3.2.4.4).
(53)This procedure can be realized via an explicit monoidal model structure, according to Röndigs and
Østvær (2008, Th. 11) or Cisinski and Déglise (2009, Def. 11.1.1).
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The last map is derived from the functor which “adds transfers” to an abelian Nisnevich
sheaf.(54) The functor M is monoidal, and sends the infinite suspension P1-spectrum
Σ∞ X+ to the motivic complex M(X).

The following beautiful theorem, due to Bachmann (2018b, Th. 25) is an avatar of
the Hurewicz theorem, which in some sense strengthen the results of Morel recalled in
the above remark.

Theorem 3.8. — Let k be a perfect field with finite 2-cohomological dimension. Then
the motivic realization functor M : SH (k)→ DM (k) is conservative when restricted
to compact motivic spectra, i.e., it detects isomorphisms between such objects.

Classically in this context, a motivic spectrum E is compact if the functor [E,−]
commutes with coproducts. A nice feature of the Nisnevich topology is that this
condition is equivalent to ask that E is in the subcategory of SH (k) generated by
extensions and finite sums of motivic spectra of the form Σ∞ X+(i)[n]. One says that
E is constructible or geometric.

Remark 3.9. — Formally, the monoidal functor M admits a right adjoint HM : DM (k)→
SH (k). It follows from the adjunction property that HM(1) is a motivic spectrum
which represents motivic cohomology. For an arbitrary ring R, one gets the R-linear
version HMR by using the ∞-category of R-linear motivic complexes. In fact, coming
back to the underlying model categories, it is exactly the motivic spectrum described
by Voevodsky (1998, §6.1). The advantage of this presentation is that, as a right
adjoint of a monoidal functor, HM is weakly monoidal. This immediately implies that
HMZ = HM(1) is an E∞-ring spectrum.

Moreover, this allowed Röndigs and Østvær (2008, see Th. 58, Th. 68) to build a
monoidal functor HMZ−mod→ DM (k) with, as source, the category of modules over
the motivic ring spectrum, and to deduce that it is an equivalence of∞-categories when
k is of characteristic 0, or after tensoring with Q.

3.3. Motivic stable stems and Morel degree

3.3.1. Stable stems. — According to the classical terminology, due to Freudenthal
(1937) who used the German word n-Stamm,(55) one defines for an integer n ≥ 0 the
n-stem as the n-th extension group of the sphere spectrum:

πS
n := [Σ∞ Sn, Σ∞ S0]SH = lim−→

r

[Sn+r, Sr]H• = πn+r(Sr) for r ≥ n + 2.

The last isomorphism follows from Freudenthal suspension theorem, loc. cit. According
to well-known facts from algebraic topology, πS

∗ is a non-negatively graded ring and
πS

0 = Z. Moreover, Serre’s finiteness theorem implies that, for n > 0, πS
n is finite.

(54)see Röndigs and Østvær (2008, §2.2.1) or Cisinski and Déglise (2019, §11.2.16).
(55)see the first paragraph of loc. cit.
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Definition 3.10. — For any pair of integers (n, i) ∈ Z2, and any field k, the motivic
(n, i)-stable stem over k is

πk
n,i := [Sn,i, S0,0]SH(k).

The motivic stable stem is a rich invariant of fields. It can be connected to other
important invariants. First, the constant simplicial sheaf functor induces a morphism
of Z-graded ring
(3.10.a) πS

∗→ πk
∗,0.

Moreover, the motivic realization functor induces a morphism of bigraded rings:
(3.10.b) πk

∗,∗ → H−∗,−∗
M (k)

inverting all indices on the right, as we have used homological (cohomological) conven-
tions for the left-hand (resp. right-hand) side.

The determination of the motivic stable stem can be reduced to computations in the
(unstable) motivic homotopy category according to formula (3.1.b). Therefore, as a
corollary of Morel’s fundamental computation, one knows at least some portion of these
groups.

Theorem 3.11. — For any field k and all integers n ≥ i, one gets:

πk
n,i =

KMW
−n (k) if n = i,

0 if n < i.

This result should be considered as the analogue of the description of the negatively
graded part of the stable stem. In degree 0, one gets the fundamental identification:
πk

0,0 = GW(k).
The morphism (3.10.a) in degree 0 is the obvious canonical map Z → GW(k). In

particular, it is not an isomorphism for non-quadratically closed fields.
In fact, one should be careful that the constant sheaf functor, left adjoint to the

evaluation at the base field k, which is a fiber functor of the Nisnevich site Smk, does
induce a fully faithful functor H →H (k).(56) But the P1-stabilization procedure has
introduced a non-trivial phenomena and the induced functor c : SH → SH (k) is
not fully faithful in general, as seen by the previous example. However, one has the
following remarkable result of Levine (2014).

Theorem 3.12. — When k is an algebraically closed field of characteristic 0, the map
πS

∗→ πk
∗,0 of (3.10.a) is an isomorphism.

One deduces that under the above assumption on k, the above functor c is in fact
fully faithful: this easily follows as SH is generated by the sphere spectrum. This
theorem is analogous to Suslin’s rigidity theorem in algebraic K-theory, and in fact, it
uses some version of rigidity for Suslin homology, due to Suslin and Voevodsky.(57) The

(56)We leave this as an exercise to the reader.
(57)See Section 4.2 for more information on this point.
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core argument of the proof consists in analyzing two slice spectral sequences, and most
notably, proving their strong convergence.

3.3.2. Morel’s plus-minus decomposition. — Identifying πk
0,0 with GW(k) and using

notation from Sections 1.2.1 and 2.4.1, we consider ϵ = −⟨−1⟩ as an endomorphism
of the unit 1 of SH (k). Then it follows that ϵ is an idempotent automorphism of 1.
After inverting 2 in SH (k), one deduces, two complementary orthogonal projectors of
the object 1[1/2]:

p+ = 1− ϵ

2 , p− = 1 + ϵ

2 .

This implies that any motivic spectrum E on which 2 is invertible decomposes as

(3.12.a) E = E+ ⊕ E−,

where E+ (resp. E−) is the image of p+ (resp. p−) and called the plus-part (resp. minus-
part) of E. By construction, the action of ϵ on E+ (resp. E−) becomes (+1) (resp. (−1)).
The following result gives a beautiful interpretation of the rational motivic stable stem.

Theorem 3.13. — For an arbitrary field k and all integers (n, i) ∈ Z2, the decomposi-
tion (3.12.a) induces the following identifications:

πk
n,i ⊗Q =

(
πk+

n,i ⊗Q
)

,⊕
(
πk−

n,i ⊗Q
)

,

πk+
n,i ⊗Q ≃ H−n,−i

M (k)Q = K
(−i)
n−2i(k)Q

πk−
n,i ⊗Q ≃

W (k)Q if n = i,

0 if n ̸= i.

The first isomorphism is induced by the map (3.10.b), while the second one is induced
by that of the Theorem 3.11. One deduces that πk−

n,i is torsion whenever n ̸= i, or in all
cases if (−1) is a sum of squares in k.(58)

For the plus part, we refer the reader to Cisinski and Déglise (2019, Theorem 16.2.13).
This result was first announced by Morel, and indeed, the proof of loc. cit. critically
rests on Morel’s previous theorem, as well as on the homotopy t-structure (see Section
3.4). It also uses the rational motivic spectrum KGL and its decomposition under the
Adams-operation, as was obtained by Riou (2010). The final argument is a description
of the projector on the plus-part as taking the homotopy cofiber with respect to η.

The computation of the minus-part was obtained by Ananyevskiy, Levine, and Panin
(2017, Theorem 5). It also uses the homotopy t-structure, and the description on the
projector on the minus-part by the so-called operation of inverting η.

(58)e.g. if k is quadratically closed or a field of positive characteristic.
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3.3.3. The action of the algebraic Hopf map. — Motivated by the preceding sketch
of proof, we show how Morel’s plus-minus decomposition is related to the algebraic
Hopf map. Consider a motivic spectrum E = E[1/2] as in Section 3.3.2. Let us
consider the algebraic Hopf map η, geometrically defined in Section 2.31, as a morphism
η : S1,1 = 1(1)[1]→ S0,0 = 1 of motivic spectra. Let us formulate some relations which
hold in the Milnor–Witt ring of k:

ϵ.η = η,

ρ.η = −1− ϵ, where ρ = [−1].

One deduces that the action of η on E+ (resp. E−) becomes trivial (resp. invertible).
Moreover, one gets the following (homotopy) exact sequence in SH (k) (obtained by
tensoring the analogous sequence for E = 1[1/2]):

E(1)[1] η−→ E→ E+.

The minus part is obtained by formal inversion of η

E− = E[η−1],

where one defines E[η−1] as the homotopy colimit of the following tower:

E η−→ E(−1)[−1] η−→ E(−2)[−2] . . .

Remark 3.14. — In fact, the previous theorem can be extended as a computation of
the whole rational motivic stable ∞-category SH (k) ⊗ Q. Indeed, the plus-minus
decomposition extends at the ∞-categorical level, and one can identify its plus-part
with the ∞-category of rational mixed motivic complexes DM (k)⊗Q and its minus-
part as the modules over the rational unramified Witt sheaf. These computations are
motivic extensions of the fact that the stable Dold–Kan adjunction (Z, H) of (3.0.b)
induces an equivalence after rationalization.

We refer the interested reader to Cisinski and Déglise (2019, Theorem 16.2.13) and
Ananyevskiy, Levine, and Panin (2017, Theorem 7). Let us further illustrate these
techniques with the following theorem of Bachmann (2018a, Theorem 35 and Proposi-
tion 36).

Theorem 3.15. — Consider the endomorphism ρ : 1→ 1(1)[1] as defined above, asso-
ciated with the unit (−1) ∈ k×.

The localization procedure with respect to ρ, described above, allows to define the stable
motivic ∞-category SH(k)[ρ−1] of ρ-inverted objects. Then the real realization functor
induces an equivalence of monoidal ∞-categories:

SH (R)[ρ−1]→ SH .

Further, for an arbitrary field k, one obtains an equivalence

SH (k)[ρ−1]→ SH (krét),
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where the right-hand side is the S1-stable ∞-category associated with Scheiderer real-
étale site of k.

As a corollary (loc. cit. Cor. 42), one obtains the following description of the ρ-inverted
motivic stable stem of a real closed field k, as a bigraded ring:

πk
∗∗[ρ−1] ≃ πS

∗ [ρ−1] .

Here the letter ρ on the right-hand side stands for a variable of bidegree (−1,−1).

3.4. Stable motivic homotopy sheaves
Following Morel, as in the unstable case, we adopt the following definition.

Definition 3.16. — Let E be a motivic spectrum over k. For any integer n ∈ Z, the
n-th motivic stable homotopy sheaf of E is the Z-graded (Nisnevich) sheaf πA1

n (E) on
Smk associated with the following presheaf

V 7→
[

Σ∞ V+, E(r)[r − n]
]
, r ∈ Z.

If we want to refer to the Z-grading of this kind of sheaves, one uses the notation
πA1

n (E)r. This numbering can seem awkward but it will be justified here below.

Example 3.17. — 1. Recall from Section 1.3.3 that a separated function field F/k

defines a fiber functor of the smooth site on Smk. By a base change argument, one
obtains the following computation:

πA1

n (1)r(F ) = πF
n−r,−r.

In particular, one gets πA1
0 (1)r(F ) = KMW

r (F ), according to Theorem 3.11.
2. Let E be a motivic spectrum, and E∗∗ be the associated bigraded cohomology

theory. Then, the motivic sheaves πA1
n (E) have already famously been considered

by Bloch and Ogus (1974), in their extension of the Gersten conjecture. More
precisely, one has the relation

πA1

n (E)r = Er−n,r

where we have denoted by En−r,r what is usually called the unramified cohomology
associated with E (denoted with curly letters in the first page loc. cit.). As an
example, one deduces that, over any perfect field k

πA1

0 (HMZ) = KM
∗ ,

where the right-hand side is the unramified Milnor K-theory sheaf (see Paragraph
2.4.2).

Remark 3.18. — Consider the notations of second point in the preceding example. In
general, with the help of the six functors formalism, E∗∗ can indeed be extended to a
Poincaré duality theory with support in the sense of Bloch and Ogus (1974), except that
one has to modify properties (1.3.3) (Fundamental class) and (1.3.4) (Poincaré duality),
in order to take into account twists by Thom spaces (defined in Example 2.20). We refer
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the reader to Déglise, Jin, and Khan (2021) for this extension — summarized in the
notion of (twisted) bivariant theory. We have already seen the need for Thom spaces,
when considering particular forms of the Gersten resolution of an unstable motivic
homotopy sheaf in Section 2.3.2.

The following result, analogous to Theorem 2.27, is also due to Morel (2005, Corollary
6.2.9), using Hogadi and Kulkarni (2020) when the base field k is finite.

Theorem 3.19. — Let k be a perfect field. Then for any motivic spectrum E over k

and any integer n ∈ Z, the Z-graded sheaf πA1
n (E) is unramified and strictly A1-invariant

(as in Theorem 2.27).

The key point of the proof is the so called stable A1-connectivity theorem, which states
that the A1-localization functor on the∞-category of S1-spectra associated with the∞-
category of (Nisnevich) sheaves on Smk (aka the stabilization of the Nisnevich ∞-topos
on Smk) respects connectivity in the sense of the canonical (Postnikov) t-structure. See
Morel, 2005, Theorem 6.1.8.

3.4.1. Homotopy modules. — The Z-graduation of a stable motivic homotopy sheaf
F∗ = πA1

n (E)∗ is not arbitrary. First, note that one gets a tautological split homotopy
exact sequence of motivic spectra:

Σ∞ Spec(k)+
s1∗−→ Σ∞(Gm)+ → Σ∞ Gm = 1(1)[1].

By definition of Voevodsky’s (−1)-construction, Section 2.3.2(2), this yields a canonical
isomorphism for any integer n ∈ Z:

(3.19.a) ϵn : (Fn)−1 → Fn−1.

Definition 3.20. — A homotopy module over k is a Z-graded Nisnevich sheaf F∗ on
Smk which is strictly A1-invariant and equipped with an isomorphism ϵ∗ of the above
form. Morphisms of homotopy modules are natural transformations of Z-graded sheaves,
homogeneous of degree 0, compatible with the structural isomorphisms ϵ∗.

We let HM(k) be the category of homotopy modules over k. Given a homotopy
module F∗ and an integer i ∈ Z, one defines the i-twisted homotopy modules F∗{i} such
that (F∗{i})r = Fr+i.

Example 3.21. — Over a perfect field k, the fundamental result of Feld (2021b) defines
an equivalence of categories which allows us to describe homotopy modules as certain Z-
graded functors M∗ on function fields over k called Milnor–Witt cycle modules, inspired
by the theory cycle modules due to Rost (1996).(59)

To such a functor M∗ and any smooth k-scheme X, Feld attaches an explicit complex
C∗(X, M) of Z-graded abelian concentrated in non-negative cohomological degrees. It

(59)And later developments due to his PhD student Manfred Schmid on the so-called Rost-Schmid
complex.
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has the form described by (2.27.a). He then shows that the zero cohomology of this
complex, which for a connected X can be described as:

M∗(X) = Ker
(
M∗(κ(X))→ ⊕x∈X(1)M∗(κ(x)){νx}

)
,

does define a homotopy module over k. Examples are given by the Milnor–Witt func-
tor KM

∗ defined in Section 2.4.1, as well as Milnor K-theory KM
∗ , extending the consider-

ations of Paragraph 2.4.2.

When k is a perfect field, stable motivic sheaves are particular instances of homotopy
modules. In fact, one easily deduces from the preceding theorem and the stable A1-
connectivity theorem the following result of Morel (2004, §5.2).

Theorem 3.22. — Assume k is perfect.
There exists a unique t-structure on SH(k), called the homotopy t-structure, whose

homologically non-negative (resp. negative) objects are the motivic spectra E over k such
that

πA1

n (E) = 0 if n < 0 (resp. n ≥ 0).
This t-structure is compatible with the monoidal structure on SH(k).(60)

The canonical functor πA1
0 : SH(k) → HM(k) induces an equivalence of categories

SH(k)♡ → HM(k). We will denote by H: HM(k)→ SH(k) the ∞-functor obtained by
composition of the reciprocal equivalence and the natural inclusion of the heart.

This implies that HM(k) is a monoidal Grothendieck abelian category. The formula
for the tensor product is: F∗ ⊗H G∗ = πA1

0

(
H(F∗)⊗ H(G∗)

)
.

Remark 3.23. — The results of this theorem can be extended to the case when k is
a non perfect field of positive characteristic p, up to inverting p in SH (k). One can
reduce to the perfect case by a limit argument and by using Lemma B.3 proved by
Levine, Yang, Zhao, and Riou (2019).

Example 3.24. — All this theory shows that the motivic stable stem admits a strong
structure. First, as a functor on function fields over k, it can be organized into a
Milnor–Witt cycles module in the sense of Example 3.21. Moreover, this uniquely
corresponds to a homotopy module. This is valid for any motivic spectrum in place of
the motivic sphere spectrum 1 = Σ∞ S0. This connects with the unstable computations
in Example 2.37.

1. We deduce from Theorem 3.11 the following fundamental result:

πA1

n (1) =

0 if n < 0,

KMW
∗ if n = 0.

(60) The unit object 1 is non-negative and the tensor product respect non-negative objects.
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It follows that KMW
∗ is the unit of the monoidal structure on HM(k). It is therefore

a (commutative) monoid object, and every object of HM(k) admits a canonical
KMW

∗ -module structure.
2. One deduces from elementary vanishing in motivic cohomology that HMZ is a non-

negative spectrum for the homotopy t-structure.(61) We have already mentioned
that πA1

0 (HMZ) = KM
∗ . Moreover, the unit o : 1→ HMZ of the ring spectrum HMZ

induces the canonical projection map

KMW
∗ = πA1

0 (1) o∗−→ πA1

0 (HMZ) = KM
∗ = KMW

∗ /(η)

explaining Remark 2.32.
More generally, it can be seen that the right adjoint HM : DM (k) → SH (k)

is t-exact for Voevodsky’s homotopy t-structure on the left-hand side, and the
induced functor on the heart is fully faithful with essential image the homotopy
module on which η acts trivially. Using Feld’s equivalence of categories, as stated
in Example 3.21, the category of homotopy modules with a trivial action of η can
be identified with that of cycle modules, as defined by Rost (1996).(62)

3. The previous result can be extended to other oriented ring spectra. The unit of
the cobordism ring spectrum o : 1 → MGL does induce an isomorphism on the
0-th stable motivic sheaves: πA1

0 (MGL) ≃ KM
∗ . In characteristic 0, this result was

extended by Yakerson (2021, Theorem 3.6.3) to the special-linear cobordism ring
spectrum MSL showing that:

πA1

0 (MSL) ≃ KMW
∗ .

4. The case of algebraic K-theory is different, as KGL is a S2,1-periodic motivic ring
spectrum. In particular, it is unbounded with respect to the homotopy t-structure
and one has for any integer i ∈ Z

πA1

i (KGL) = K∗{i},

where the right-hand side is the unramified K-theory sheaf.
5. Similarly, higher Grothendieck–Witt groups are S8,4-periodic and one gets in par-

ticular:
πA1

i+4(GW) = πA1

i (GW){4}.

3.4.2. Slice filtration. — Note that the situation described in point 4 of the above
example contrasts with the topological context, where the complex K-theory spectrum
in degree 0 coincides with the Eilenberg–MacLane spectrum, therefore leading to the
(topological) Atiyah–Hirzebruch spectral sequence.

(61)This follows from the fact homotopy modules are unramified as Z-graded sheaves and from the
vanishing Hn,i

M (k,Z) = 0 if n > i, which is proved by Suslin and Voevodsky (2000, Lemma 3.2(2)).
(62)See Déglise (2013) for all these assertions.



1241–48

This fact led Voevodsky to introduce the slice filtration on a motivic spectrum E, an
avatar of the cellular filtration in the motivic world except that cells are given by the
motivic sphere P1

k:(63)

. . .→ fnE→ . . .→ f1E→ f0E→ f−1E→ . . .

He defined the n-th slice sn(E) of E as the homotopy cofiber of fn+1E→ fnE.
Then, Voevodsky (2002, Conjectures 7, 10) postulated that the 0-slice of both KGL

and the sphere spectrum 1 are given by the the Eilenberg–MacLane motivic spectrum:

s0(1) = HM, sn(KGL) = HM(n)[2n].

The first conjecture was proved by Voevodsky in characteristic 0. Then, Levine (2008)
proved both conjectures over a perfect infinite base field k.(64) This lead to a new
definition of the motivic version of the Atiyah–Hirzebruch spectral sequence(65) for a
smooth k-scheme X: it can be described as the spectral sequence associated to the slice
filtration on KGL, as conjectured by Voevodsky and proved in Levine (2008). See also
Hoyois (2015, Th. 8.5, 8.7) for another approach.

Note that another construction of the motivic Atiyah–Hirzebruch spectral sequence
was already done by Friedlander and Suslin (2002). As of now, the agreement of the
latter with the slice spectral sequence of the K-theory spectrum KGL is not known.
Also, the convergence of the slice spectral sequence in general is a difficult matter, solved
in Levine (2013). See also Hoyois (2015, Th. 8.12).

3.4.3. Morel’s π1-conjecture and beyond. — Before stating the last main computation
of this section, let us recall that Spitzweck and Østvær (2012) considered the interaction
between Morel’s homotopy t-structure and Voevodsky’s slice filtration. This led them to
introduce an important ring spectrum, called the very effective hermitian K-theory.(66)

It is defined as:
kq = f0(τ≥0KQ)

where τ≥0 is the truncation functor with respect to Morel’s homotopy t-structure and
f0 the first stage of the slice filtration. It admits a canonical structure of commutative
algebra in the ∞-category SH (k) (i.e., it is an E∞-spectrum). It is proposed in loc.
cit. that kq plays a role analogous to the connective cover of real topological K-theory
in algebraic topology.

The following result of Röndigs, Spitzweck, and Østvær (2024) emerged from a
far-reaching conjecture of Morel, and was the motivation for many works in motivic
homotopy theory. Let us also add that it is the stable analogue of the Asok-Fasel’s
conjecture mentioned in Section 2.5.3.

Theorem 3.25. — Assume the characteristic exponent c of k is different from 2.

(63)beware that this tower is possibly infinite in both directions;
(64)The assumption that k is infinite can be removed thanks to Hogadi and Kulkarni (2020).
(65)whose existence was conjectured by Bĕılinson (1987, §5, B.);
(66)Beware about Remark 3.5 concerning the terminology used here.



1241–49

1. The unit u : 1→ kq of the very effective hermitian K-theory induces a short exact
sequence of homotopy modules after inverting e:

0→ KM
∗ /24{2} → πA1

1 (1) u∗−→ πA1

1 (kq)→ 0

Looking at the zero-th graded part and evaluating at k, the sequence becomes the
following explicit computation of the motivic stable stem, which was conjectured by
Morel:

0→ KM
2 (k)/24→ πk

1,0 → k×/2⊕ Z/2→ 0.

2. After application of the second motivic homotopy sheaf, u induces the following
short exact sequence of homotopy modules after inverting e:

0→ πA1

1 (HMZ)∗/24{2} ⊕KM
∗ /2{4} → πA1

2 (1) u∗−→ πA1

2 (kq).

Looking at the first graded part and evaluating at k, one further obtains the split
short exact sequence, after inverting e:

0→ KM
3 (k)/2→ πk

3,1 → µ24(k)→ 0.

Based on fundamental results on the slice and very effective slice filtrations, such
as Levine’s convergence result for the former, the proof consists of a very involved
computation of the slice spectral sequences for both the sphere and very effective
hermitian K-theory spectra.

4. Application to stable stems

4.1. Computing the stable stems: a short review

Since the initial introduction of the fundamental group by Poincaré (1895), and its
subsequent extension to higher homotopy groups by his successors, the computations
of homotopy groups has been a driving force in homotopy theory. The case of higher-
dimensional spheres remains a central problem to this day.

While Poincaré initiated some of the first computations (via coverings and polyhedral
decompositions of varieties), the main advancements in the first half of the 20th century
were the following ones:

– Hopf (1931) constructed the Hopf map, that we will denote by ηtop, and carried
out the first computation of higher homotopy groups: π3(S2) = Z.ηtop.

– Hurewicz (1935) proved the theorem that now bears his name, allowing the com-
putation of higher homotopy groups in terms of homology groups. As mentioned
by Hurewicz in op. cit., this result implies:

πi(Sn) =

0 if i < n,

Z if i = n.
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– For an integer i ≥ 0, Freudenthal (1937) established the theorem that bears his
name, proving that the suspension map is an isomorphism in the following cases:

(4.0.a) πi+n(Sn) ∼−→ πi+n+1(Sn+1) if n > i + 1.

This implies the existence of the i-stem, which we have already denoted by πS
i in

Section 3.3.1.
A new era was inaugurated by the PhD thesis of Serre (1951), which introduced fibrations
(notably the path fibration) and spectral sequences in this area. It provided a systematic
method for computing homotopy groups of spheres and demonstrated the finiteness of
most of these groups, particularly the non-zero stable stems.(67)

From this background, a wealth of techniques and theories have emerged, partly
motivated by the problem of unveiling the stable stem. Let us indicate some landmark
results, and provide relevant details for this note thereafter.

– Motivated by the Kervaire invariant problem and the aim of improving the com-
putatibility of Serre’s spectral sequences, Adams (1958) introduced the Adams
spectral sequence, which uses the homological algebra of the Steenrod algebra to
compute the p-torsion in the stable stems.

– Novikov (1967) extended Adams’s construction to any (appropriate) spectrum in
place of the Eilenberg–MacLane spectrum HFp and advocated for the use of the
complex cobordism spectrum MU.

– The final point we wish to highlight is not a single work but rather a collection of
results and a unifying philosophy, now referred to as chromatic homotopy theory.(68)

Numerous contributors have shaped this area, with cornerstone by Quillen (1969).
A pioneering work, rooted in Morava’s contributions — including his localization
theorem and the introduction of Morava K-theories — was made by Miller, Ravenel,
and Wilson (1977), where the term “chromatic” was introduced.

In order to introduce the reader to the techniques used in the sequel, we will now review
the main spectral sequences that were mentioned above. We will later recall a general
construction to obtain all of them, in Example 4.14.

4.1.1. The Adams spectral sequence. — Let us fix a prime p, which will be implicit in
all subsequent notation. The Adams spectral sequence at the prime p is a very efficient
tool to compute the p-adic completion π̂S

∗ of the stable stems which, according to Serre’s
fundamental theorem, are given by the formula:

π̂S
i = πS

i ⊗Z Zp =


Zp (p-adic integers) i = 0,

(πS
i )⊗Z Z(p) = (πS

i )[p∞] = (πS
i )p−tor i > 0,

0 i < 0.

(67)Around the same time, J. H. C. Whitehead (1950) and G. W. Whitehead (1953), building on Blakers
and Massey’s notion of triads, introduced the EHP sequence, which also provides a general inductive
method for computing homotopy groups of spheres.
(68)See also the Bourbaki talks no 728, 1005, 1029.
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The Adams spectral sequence(69) is multiplicative and takes the form

(4.0.b) Es,t
2 = Exts,t

Acl
(Fp,Fp)⇒ π̂S

t−s.

Let us clarify the notation.
– The grading follows the conventions from algebraic topology: differentials on the

Er-page have bidegree (r, r − 1):

ds,t
r : Es,t

r → Es+r,t+r−1
r .

– Acl is the classical Steenrod algebra at the prime p, made by the cohomological
stable operations in (singular) Fp-cohomology. This is a Z-graded Hopf algebra
over Fp, which in degree n can be defined as:

An
cl = [HFp, Sn ∧HFp]SH = [HFp, HFp[n]]SH.

– Exts,t
Acl

denote the s-th extension group computed in the category of Z-graded
Acl-modules, and the integer t refers to the internal r-th grading.

– The filtration on the abutment has the following form:

π̂S
∗ = F 1π̂S

∗⊃ F 2π̂S
∗⊃ · · ·

See Bousfield (1979, page 275) for an explicit formula. Moreover, the E2-page is
concentrated in the following region:(70)

Es,t
2 = 0 if

s < 0, or t < s,

or 0 < s < t < 2s− 3.

This implies that the above filtration is finite in each degree, that the spectral
sequence converges (strongly) and that, for r > max

(
s, 1

2(t− 3s + 2)
)
,

Es,t
∞ = Es,t

r .

4.1.2. Computing with the Adams spectral sequence. — Since its introduction, the
above spectral sequence has been a successful tool for computing the stable stem, by
focusing on p-primary parts for each prime p. There are three major challenges to
overcome in this computation:
Step 1. Determining the E2-term. It is customary to represent Es,t

2 in a diagram called
an Adams chart, where s (the Adams filtration) is plotted on the vertical axis,
and f = t− s (the stem) on the horizontal axis.

Step 2. Understanding enough of the differentials on each page to deduce the E∞-term.
An element a in a given page Es,t

r that induces a non-trivial element in the
subquotient Es,t

∞ is called a permanent cycle.
Step 3. Solving the extension problem. It allows one to reconstruct the whole filtered

Fp-vector space from its associated graded (under a finite filtration).

(69)Historically, the construction and results are all due to Adams. A classical reference is Adams (1974,
p. III.15). The following review is largely based on the excellent account made by Ravenel (1986).
(70)These vanishing conditions can be improved in many ways. See Adams (1966, Th. 1.1) to begin with.



1241–52

The goal of this section is in particular to explain how motivic homotopy theory has
introduced new tools that allows improving calculations at each stage (especially steps
2 and 3). Since the main difficulty lies in the first and only even prime p = 2, we will
focus on this case. To give the reader a sense of the progress achieved, we will state
a few general results. According to Ravenel (1986, Th. 3.4.1), the first four nontrivial
rows in the Adams chart are given by the F2-algebras with generators and relations as
follows:

– E0,∗
2 = F2[0],

– E1,∗
2 = F2⟨hi, i ≥ 0⟩, where deg(hi) = 2i,

– E2,∗
2 = F2⟨hihj⟩/(hihj − hjhi, hihi+1),

– E3,∗
2 = F2⟨hihjhk, 0 ≤ i < j < k; ci, i ≥ 0⟩/(hih

2
i+2, h2

i hi+2), deg(ci) = 11.2i.
The family of elements (hi)i≥0 in Ext1

Acl
(Fp,Fp) corresponds to the family of generators

(Sq2i)i≥0 of the Steenrod algebra (at the prime 2). The element ci is detected by a Massey
product ci ∈ ⟨hi+1, hi, h2

i+2⟩, which is well-defined thanks to the relations satisfied by
the family of elements (hi)i≥0.

Example 4.1. — As a basic example of resolution in Step 2 above, one knows that h0, h1,
h2, h3 are all permanent cycles, and detect respectively 2 ∈ π̂S

0, and the Hopf elements
ηcl ∈ π̂S

1 = Z/2, ν ∈ π̂S
3 = Z/8, σ ∈ π̂S

7 = Z/16. It is a celebrated theorem of Adams
(1960) that none of the others hi are permanent — in fact, d1,2i

2 hi = h0h
2
i−1 ≠ 0 for

i > 3.

Remark 4.2. — The resolution of the above Step 1 involves the use of other kinds of
algebraic spectral sequences, which converge to the E2-term to be computed. There are
many such spectral sequences: Cartan–Serre, May, algebraic Adams–Novikov, chromatic,
etc. These tools are also used in the computations of Isaksen, Wang, and Xu (2023),
and will briefly appear at the end of this lecture (see Theorem 4.26). We refer the reader
to Ravenel (1986) (Chap. 3, §2 for May spectral sequences, Chap. 5 for the chromatic
spectral sequence), as well as to Miller (1981) for interactions between these various
spectral sequences.

4.1.3. The Adams–Novikov spectral sequences. — One of the reasons to consider the
so-called Adams–Novikov spectral sequences is that they allow determining certain
differentials in the Adams spectral sequence. This is based on the fact that one can
replace the ring spectrum HFp in the preceding construction by an arbitrary ring
spectrum E (see next section). The resulting construction is functorial in E.

Let us clarify the premises of chromatic homotopy theory. The theory of characteristic
classes can be expressed in stable homotopy by a very simple structure: a (complex)
orientation on a given ring spectrum E is a class c ∈ Ẽ2(CP∞) = E2(BU) in the
associated reduced cohomology of the infinite projective space which restricts to 1 ∈
Ẽ2(CP1) ≃ E0(∗). The beauty of stable homotopy is that this single class determines
higher Chern classes satisfying all classical properties, except that the first Chern class
of a tensor product of two line bundles is not always given by addition, but in general is
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expressed via a well-defined (commutative) formal group law FE(x, y), with coefficients
in the base ring E∗ = E∗(∗), and depending only on the oriented ring spectrum (E, c).

A fundamental observation made by Quillen (1969) is that the complex cobordism
ring spectrum MU admits a canonical orientation cMU such that (MU, cMU) is the
universal oriented ring spectrum and the associated formal group

(
MU∗, FMU(x, y)

)
is

the universal formal group law, defined by Lazard.(71) As Fp-linear singular cohomology
is oriented,(72) it inherits a ring map c : MU → HFp. This yields the (first) Adams–
Novikov spectral sequence:

(4.2.a) Es,t
2,MU = Exts,t

MU∗MU(MU∗, MU∗)⇒ πS
t−s,

a multiplicative spectral sequence which converges to the integral stable stem. In
contrast to the Adams spectral sequence, we have used the graded Z-algebra MU∗MU,
which is the Z-dual of the algebra of stable operations MU∗MU on complex cobordism.
The pair (MU∗, MU∗MU) forms what is called a (graded) Hopf algebroid over the ring
R = Z: a groupoid in the category of (graded) R-algebras.(73) The E2-term is given
by the extension groups in the category of graded comodules over this graded Hopf
algebroid, and as before, the index t refers to the internal grading.

One can get a more useful spectral sequence by working in the p-local stable homotopy
category SH(p), obtained by inverting all primes except p. Indeed, Quillen showed that
the p-local ring spectrum MU(p) splits into a direct sum of tensor products of a ring
spectrum BP called the Brown–Perterson spectrum. This decomposition reflects the
structure of the category of formal group laws over Z(p), as BP is complex oriented and
the associated formal group law (BP∗, FBP) is the universal p-typical one.(74) Applying
the general construction to BP, one gets the (second) Adams–Novikov spectral sequence:

(4.2.b) Es,t
2,BP = Exts,t

BP∗BP(BP∗, BP∗)⇒ πS
t−s⊗Z Z(p) ,

with similar properties to the first one, but converging to the p-local stable stem. In
fact, the above E2-term is precisely given by the p-component of (4.2.a), according to
Ravenel (1986, Theorem 1.4.2).

Since the formal group law of HFp is additive, therefore p-typical, one deduces that the
ring map c corresponding to the orientation of HFp induces a ring map c′ : BP→ HFp.
The map c′ induces a morphism of multiplicative spectral sequences Es,t

r,BP → Es,t
r . One

(71)In particular, the ring of coefficients MU∗ is isomorphic to the Lazard ring L = Z[x1, x2, . . .]. See
Ravenel (1986, Theorems 4.1.6 and A2.1.10).
(72)Naturally, the associated formal group law is the additive one.
(73)We refer the reader to Ravenel (1986, Appendix 1) for more information, which attributes the
terminology to Haynes Miller.
(74)This structure is based on the Cartier isomorphism for p-local formal group laws. We refer the
reader to Ravenel (1986, Appendix 2) for a concise exposition aimed at applications in homotopy theory.
A more systematic treatment can be found in the classical monograph of Hazewinkel (2012). Recall in
particular that BP∗ = Z(p)[v1, v2, . . .], with deg(vi) = 2(pi − 1).



1241–54

can then combine information between both spectral sequences to obtain computations
of the stable stem.(75)

Remark 4.3. — As explained in a celebrated course by Hopkins (1999), the Hopf alge-
broid (MU∗, MU∗MU) is an affine presentation of the stackMF G of formal group laws
with strict isomorphisms. One can define a line bundle ω on it by assigning to a formal
group law over a ring R its space of invariant differential forms. Then the E2-term of
the Adams–Novikov spectral sequence(4.2.a) is concentrated in even degree t and can
be computed as:

Es,2t
2,MU = Hs

(
MF G, ω⊗t

)
.

This beautiful formula (proved in Goerss, 2008, §3.2, (3.5)) allows one to express
chromatic homotopy theory as arising from the stratification of the p-localization of the
stack MF G induced by the height of p-typical formal group laws.

4.1.4. Spectral sequences in motivic and classical stable homotopy: a first link. — To
provide the reader with an initial sense of the relevance of the motivic perspective
in comparison to previous computational tools, we conclude this subsection with a
striking comparison between spectral sequences. Fix an algebraically closed field k of
characteristic 0. As recalled in Theorem 3.12, the motivic stable stems of k in weight 0
agree with the classical stable stems. Furthermore, as discussed in Section 3.4.2, every
motivic spectrum admits a canonical slice filtration. When applied to the motivic sphere
spectrum over k, one deduces the slice spectral sequence for the motivic sphere spectrum
in weight 0:

Ep,q
1,slice = [sq(1),1[p + q]]⇒ πk

−p−q,0 ≃ πS
−p−q .

The main result of Levine (2015) is the following comparison theorem.

Theorem 4.4. — Consider the above assumptions. Then, up to the following rein-
dexing, the above slice spectral sequence is isomorphic to the Adams–Novikov spectral
sequence:

Ep,q
r,slice ≃ E3p+q,2p

2r+1,MU.

In particular, both induced filtrations on πS
−p−q coincide.

This result unveils a surprising link between the algebro-geometric content of motivic
spectra and the basic structure of classical spectra.(76)

(75)See Ravenel (1978, §4) for a thorough study up to degree 18.
(76)Such a connection — though not stated in this form — was already anticipated by Voevodsky
(2002), at the very end of Section 6.
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4.2. Motivic cohomology with torsion coefficients
We fix a prime ℓ invertible in k and state in this paragraph the known results, all

due to Voevodsky, about the motivic Eilenberg–MacLane spectrum HMFℓ with Fℓ-
coefficients (see Example 3.4(2), Remark 3.9). To comply with Dugger and Isaksen
(2010) and Isaksen, Wang, and Xu (2023), we let Mℓ be the bigraded Fℓ-algebra such
that Mn,i

ℓ = Hn,i
M (k,Fℓ).

We also write Hétµℓ for the motivic ring spectrum which represents étale cohomology
with coefficients in the Z-graded Fℓ-torsion sheaf µ⊗,∗

ℓ . According to the rigidity theorem
of Suslin and Voevodsky (2000, Corollary 6.4.2), it can be identified with the étale
sheafification aét(HMFℓ) of HMFℓ.(77) This yields a canonical morphism of motivic ring
spectra:

(4.4.a) HMFℓ
γét−→ Hétµℓ.

Given that result, it is notable that the Beilinson–Lichtenbaum conjecture, proved by
Voevodsky (2011),(78) is equivalent to the following formulation stated purely in terms
of the homotopy t-structure on SH (k), as defined in Theorem 3.22. In the case where
k is not perfect of characteristic p, the formulation still makes sense and remains valid
by appealing to Remark 3.23.

Theorem 4.5. — Consider the above notation. Then the map (4.4.a) induces an
isomorphism of motivic ring spectra over k:

HMFℓ → τ≥0
(
Hétµℓ

)
,

using the (homological) truncation functor associated with the homotopy t-structure on
SH (k) of Theorem 3.22.

We leave it to the reader to verify the equivalence of this statement with the classical
formulation of the Beilinson–Lichtenbaum conjecture given in Suslin and Voevodsky
(2000, § 3, Conjecture (Be4)).(79)

4.2.1. Periodicity in Galois cohomology. — We will deduce from the preceding theo-
rem a description of the stable motivic homotopy sheaves of HMFℓ (Definition 3.20).
According to the preceding result, let us consider étale unramified µq-cohomology, a
classical invariant in arithmetic, organized as a homotopy module (Definition 3.20). For
any integer i ∈ Z, we let Hi

ét(µℓ)∗ be the homotopy module over k whose n-th graded
part is given by the sheaf

Hi
ét(µℓ)n = Hi+n

ét (−, µ⊗n
ℓ ),

obtained by considering the Zariski, or equivalently Nisnevich, sheafification of the
corresponding étale cohomology presheaf on Smk. It is worth noting that the homotopy

(77)The cohomology represented by aét(HMFℓ) is usually called the Lichtenbaum motivic cohomology
with Fℓ-coefficients.
(78)See also the review of Riou (2014).
(79)Hint: use the properties of the homotopy t-structure as stated in Section 3.4.
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module Hi
ét(µℓ)∗ is equivalent to the Rost cycle module defined by the following Galois

cohomology functor on function fields E/k:

E 7→ H i+∗(GE, µ∗
q).

This follows from the equivalence of categories mentioned in 3.24(2), the fact that η

acts trivially on Hétµℓ and the identification of étale cohomology of fields with Galois
cohomology.

By construction, we also have the relation πA1
i (Hétµℓ) = H−i

ét (µℓ)∗. The ring structure
of Hétµℓ, as well as the classical cup product in Galois cohomology, corresponds to the
fact that H∗

ét(µℓ)∗ is a commutative monoid object in the category of homotopy modules.
We will simply say that it is an algebra. It is striking that the stable motivic homotopy
sheaves πA1

i (Hétµℓ) satisfy a periodicity property analogous to the vi-periodicity observed
in the stable stem.

Let us first recall that, for any integer q, the action of the absolute Galois group Gk

on the Galois module µ⊗,q
ℓ is given by the q-th power χq of the cyclotomic character

χ : Gk → F×
ℓ . This implies that there exists a canonical isomorphism µ⊗,ℓ−1

ℓ ≃ Fℓ of
Galois modules (or étale sheaves), which can be immediately translated into a periodicity
isomorphism in the algebra H∗(GE, µ∗

q) for any extension field E/k. To get a motivic
formulation that will be shortly stated, we apply the above theorem to deduce a canonical
isomorphism:

M0,0
ℓ ≃ H0(Gk,Fℓ) ≃ H0(Gk, µ⊗,ℓ−1

ℓ ) ≃M0,ℓ−1
ℓ

and we denote by τ ′ ∈M0,ℓ−1
ℓ the image of 1 under this isomorphism.

We can improve this periodicity if k admits an ℓ-th root of unity. Then the choice of
ζℓ ∈ µℓ(k) induces an isomorphism µℓ ≃ Fℓ, and therefore a periodicity in H∗(GE, µ∗

q)
as above. Moreover, let us recall that one gets the following exact sequence in motivic
cohomology:(80)

0→ H0,1
M (k,Fℓ)→ H1,1

M (k,Z) = k× ℓ−→ k× = H1,1
M (k,Z)→ H1,1

M (k,Fℓ)→ 0.

It induces a canonical isomorphism M0,1
ℓ (k) ≃ µℓ(k). Then we denote generically by

τ ∈M0,1
ℓ (k) the element which corresponds to ζℓ via this isomorphism.(81)

This study, paired with the previous theorem, gives the following corollary formulated
in terms of homotopy modules.

Corollary 4.6. — Consider the above notation. Then there exists canonical isomor-
phisms of commutative monoids in the monoidal abelian category of homotopy modules:

πA1

∗ (HMFℓ) ≃ ⊕l−2
i=0H−i

ét (µℓ)∗[τ ′]

πA1

∗ (Hétµℓ) ≃ ⊕l−2
i=0H−i

ét (µℓ)∗[τ ′, τ ′−1]

(80)One uses the exact sequence of abelian groups 0 → Z ℓ−→ Z → Fℓ, viewed for example in motivic
complexes, and the known computations of motivic cohomology with twists 0 and 1.
(81)Observe that according to these definitions, τ ′ = τ ℓ−1.
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where the left-hand side is seen as a polynomial algebra (resp. Laurent polynomial algebra)
in the variable τ ′, also seen as an element of the respective left-hand sides.

If we assume that k contains an ℓ-th root of unity and let τ be given as above, then
one deduces canonical isomorphisms of algebras in homotopy modules:

πA1

∗ (HMFℓ) ≃ KM
∗ /ℓ[τ ]

πA1

∗ (Hétµℓ) ≃ KM
∗ /ℓ[τ, τ−1]

with the same description of the right-hand sides as previously, but with respect to τ .

In both cases, the first isomorphism is induced by (4.4.a) and follows from the
periodicity properties studied earlier together with the preceding theorem; the second
isomorphism is a reformulation of these periodicity properties.

Remark 4.7. — 1. Since we are mixing cohomological bidegrees and homological bide-
grees for the homotopy t-structure, we make explicit the effect of multiplication
by τ ′ (respectively τ) in terms of the Gm-twist operation on homotopy modules
(see Definition 3.20):

πA1

i (Mℓ).τ ′ = πA1

i+l−1(Mℓ){l − 1}

resp. πA1

i (Mℓ).τ = πA1

i+1(Mℓ){1}.
2. When k does not contain an ℓ-th root of unity, the stated periodicity is the best

possible as for all q ≥ 0, one gets:

πA1

q (HMFℓ)q(k) = M0,q
ℓ ≃ H0(Gk, µ⊗,q

ℓ ) =

Fℓ if q = 0 mod ℓ− 1,

0 otherwise.

One deduces from the previous corollary the following result.

Corollary 4.8. — Under the assumptions of the Theorem 4.5, the morphism of
motivic ring spectra over k, induced by (4.4.a),

HMFℓ[τ ′−1]→ Hétµℓ

is an isomorphism, where the left-hand side is obtained by internally inverting τ ′ (see
Section 4.3.3).

This statement has a long history, starting with the pioneering work of Thoma-
son (1985) where an analogous result for algebraic K-theory was established. The
above motivic version was in fact proved independently of the validity of the Beilinson–
Lichtenbaum conjecture (which is stronger) by Levine (2000, Theorem 6.2).

Note that this corollary consists of two distinct assertions: first, an étale descent
theorem for the τ ′-inverted theory; second, a computation of étale motivic cohomology
in terms of classical étale cohomology. The latter is, as mentioned before Theorem 4.5,
a rigidity statement (that also has a long history), and was established for motivic coho-
mology by Suslin and Voevodsky (2000, Corollary 6.4.2). It has since been generalized
in various contexts, the latest statement in motivic homotopy theory being Bachmann
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(2021). The descent statement was likewise extended in motivic homotopy theory by
Elmanto, Levine, Spitzweck, and Østvær (2022) (for arbitrary MGL-modules).

The following corollary plays a central role in Isaksen, Wang, and Xu (2023).

Corollary 4.9. — Let k be an algebraically closed field of characteristic prime to ℓ.
Then the Fℓ-linear motivic cohomology ring of coefficients over k is the polynomial
algebra:

Mℓ = Fℓ[τ ]
where τ is an element of homological bidegree (0,−1) defined by the choice of an ℓ-th
root of unity in k.

Indeed, as k is separably closed, one obviously obtains an isomorphism of graded
algebras KM

∗ (k)/ℓ = Fℓ, concentrated in degree 0.

4.2.2. The motivic Steenrod algebra. — The last ingredient that we will need is the
motivic Steenrod algebra modulo 2 over the field C. More generally, the mod ℓ motivic
Steenrod algebra over a field k of characteristic prime to ℓ is defined as the Fℓ-algebra
of stable cohomology operations on Fℓ-linear motivic cohomology:

A∗∗(k,Fℓ) := (HMFℓ)∗∗(HMFℓ),

using the topological notation, keeping in mind the bidegree grading specific to the
motivic context.

Instead of recalling all the details, we will give some key references to the reader.
These operations were first computed by Voevodsky (2003) over a perfect field.(82) Nice
accounts, with corrections and complements, were given by Riou (2012) and Hoyois,
Kelly, and Østvær (2017).

As in the topological situation, explained in the previous section, it is easier to work
with the dual motivic Steenrod algebra modulo ℓ, defined as follows:(83)

Ap,q(k,Fℓ) = (HMFℓ)p,q(HMFℓ) = [1(q)[p], HMFℓ ⊗HMFℓ]SH(k).

For future reference, we will simply write A = (HMF2)∗∗(HMF2) taken over the field C.
We now recall the explicit presentation of this bigraded commutative F2-algebra which
also carries with a bigraded M2-algebra structure:

(4.9.a) A = M2[τ0, τ1, . . . , ξ1, ξ2, . . .]/(τ 2
i − τξi+1)

where the generators are the motivic analogue of the Milnor basis:
– τi has bidegree (2i+1 − 1, 2i − 1) and is dual to Sq2i−1,
– ξi has bidegree (2i+1 − 2, 2i − 1) and is dual to Sq2i Sq2i−1 · · · Sq1.

(82)This assumption can easily be removed as the Fℓ-linear motivic cohomology spectrum is invariant
under purely inseparable extensions.
(83)While this bigraded Fℓ-algebra is Fℓ-dual to its cohomological counterpart, its algebraic structure in-
volves the Cartan relations which are simpler than the Adem relations which describe the multiplication
of Ak

ℓ . This is perfectly analogous to the situation in topology.
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We refer the reader to Hoyois, Kelly, and Østvær (2017, Theorem 5.6) for a precise and
comprehensive description of all the algebraic structures of the Hopf algebroid (M2, A).

4.2.3. Complex realization. — We conclude by studying the complex case k = C, using
the complex realization ρC : SH (C) → SH of Section 3.2.2. Fixing an ℓ-th root ζℓ

of unity in C, we get the class τ ∈M0,1
ℓ as above.

Recall that we have in Example 3.2.2 defined the Fℓ-linear Betti motivic spectrum:
HBFℓ := ρC∗(HFℓ). Note that, apart from the fact that it has coefficients in a field of
positive characteristic, it satisfies all the axioms of a Mixed Weil cohomology theory, as
defined in Cisinski and Déglise (2012). In particular, many of the results of loc. cit. apply
mutatis mutandis to the resulting motivic ring spectrum HBFℓ, except that one needs to
modify the discussion using the K-theory spectrum KGL at the end of §2.3.(84) More
importantly, HBFℓ is (0, 1)-periodic and in fact, one can define a canonical Tate-twisting
Fℓ-vector space attached to this cohomology. Using the notation of loc. cit., 2.1.3, 2.1.5,
one puts:

Fℓ(1) := H̃1
B(Gm,Fℓ)

using the reduced Betti cohomology of the sphere Gm. According to the axioms of a
mixed Weil theory, this is a 1-dimensional Fℓ-vector space so that we can define its i-th
tensor power Fℓ(i) for any integer i. Moreover, for any smooth complex scheme X, any
pair of integers (n, i) ∈ Z2, one gets a canonical isomorphism:

Hn,i
B (X,Fℓ) ≃ Hn

B(X,Fℓ)⊗Fℓ
Fℓ(i).

See loc. cit. §2.1.7. In fact, in the case of Betti cohomology, Tate-twists admit a canonical
trivialization:

Fℓ(1) = H̃1(Gm(C),Fℓ) ≃ H0(S0,Fℓ) = Fℓ.

We will still denote by c ∈ H0,1
B (C,Fℓ) the class defined by this isomorphism,(85) so that

the (0, 1)-periodicity of Betti cohomology is induced by multiplication by c.
According to the description of the motivic Eilenberg–MacLane spectrum using sym-

metric powers (see Voevodsky, 1998, §6.1),(86) one deduces a canonical isomorphism:
ρC(HMFℓ) ≃ HFℓ. This allows one to apply the adjunction (ρC, ρC∗) to get the following
morphism of ring spectra:(87)

γB : HMFℓ → ρC∗ρC(HMFℓ) ≃ ρC∗(HFℓ) = HBFℓ.

The functoriality properties of the induced map on the associated cohomologies and the
construction of τ imply that γB∗(τ) = c.

(84)Indeed, Theorem 2.3.23 of loc. cit. fails in the Fℓ-linear context because of the existence of nontrivial
Steenrod operations. This is why we use a different argument to get the map γB below.
(85)According to loc. cit. 2.2.6 and 2.2.8, it induces an orientation of the motivic ring spectrum HBFℓ,
which is unique as seen from the preceding isomorphism;
(86)this works well since we are over a field of characteristic 0,
(87)There are of course several other ways to build this map.



1241–60

Finally, the comparison of Fℓ-linear étale cohomology with Betti cohomology induces
a commutative diagram of motivic ring spectra:

HMFℓ

γét
// Hétµℓ

τ

∼
// HétFℓ

∼��
HMFℓ

γB
// HBFℓ

(4.9.b)

where the right-hand side map is the isomorphism, obtained by the analytification map.
The commutativity of the diagram can be obtained by using the analytification functor
of Ayoub (2010, §2). Therefore, one can restate all the previous results in terms of
complex realization as follows.

Corollary 4.10. — Over the field k = C, the map γB induces isomorphisms of
motivic ring spectra:

HMFℓ ≃ τ≥0HBFℓ,

HMFℓ[τ−1] ≃ HBFℓ.

The following result was first proved by Dugger and Isaksen (2010) (see in particular
Corollary 2.9).

Corollary 4.11. — Consider the notation introduced above. Then the complex real-
ization functor ρC induces an isomorphism of graded Hopf algebroid (see Section 4.1.3)
over the graded ring Mℓ[τ−1] ≃ Fℓ[τ, τ−1]:

(Mℓ,A∗∗(C,Fℓ))[τ−1] ≃ (Fℓ, Acl)⊗Fℓ
Mℓ[τ−1].

The left-hand side is obtained by inversion of the element τ , while the right-hand side is
obtained by scalar extensions.

In fact, op. cit. is slightly less precise, and considers only the case ℓ = 2, which is the
most interesting one from a computational perspective.

Remark 4.12. — This corollary is the first manifestation of the principle that the weights
in (torsion) motivic homotopy theory add a supplementary dimension to the classical
invariants. As an example, one should be aware that the cohomological operations on
Betti cohomology modulo ℓ are obtained from the Steenrod algebra by scalar extension
along the Laurent polynomial F2-algebra F2[c, c−1]. In particular, besides the Steenrod
operations, we have the operation corresponding to multiplication by the scalar c ∈
H0,1

B (C,Fℓ), which expresses the (0, 1)-periodicity of Betti cohomology.
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4.3. The motivic Adams spectral sequence
4.3.1. Bousfield nilpotent completions and Adams towers. — We will now recall a
general construction due to Bousfield (1979, §5), from which we adopt the notation.
The aim is to define generalized Adams spectral sequences, compute their E2-term as
suitable extension groups, compute their abutment in terms of appropriate resolutions,
and to elucidate their convergence properties. Nowadays, the construction can be
made in an arbitrary stable presentable (symmetric) monoidal ∞-category C , which
encompasses both the cases of SH and SH(k).(88)

To be consistent with the previous notation, we let [X, Y ]C be the morphisms between
two objects of C computed in its homotopy category. Given an integer s ∈ Z, we define:
πs(X, Y ) = [X[s], Y ].

We fix an object E in C with a (not necessarily commutative) monoid structure(89)

u : 1→ E and µ : E⊗ E→ E in the associated homotopy category Ho C . We slightly
abuse notation and denote by u : 1→ E an arbitrary representative, as an element of
C 1, of the homotopy class u. We then consider the homotopy fiber E of the map u and
put Es = E⊗s. One deduces homotopy exact sequences:

E
f0=ϵ

// 1
u

// E,

Es+1 fs+1=ϵ⊗Es

// Es // E⊗ Es,

the second one being obtained from the first one by left-tensoring with Es. We deduce
a decreasing tower of objects over 1:

· · · → Es+1 fs+1−−→ Es → · · · → E f0−→ 1

or, in other words, an∞-functor E• : Zop
≥0 → (C /1), with values in the indicated comma

∞-category (see Cisinski, 2016, Définition 10.1 for comma ∞-categories). Let us also
define by Es the homotopy cofiber which fits into the homotopy exact sequence:

Es+1 → 1→ Es.

Applying the octahedron axiom (see Lurie, 2017, Theorem 1.1.2.14), to the preceding
homotopy exact sequences, one deduces an octahedral diagram, in planar form:

Es+1 fs+1
//

}}

Es

!!
xx

1

!!

(∗) E⊗ Es

yy

ff
(∗)

(∗)

1(∗)

}}

Es gs+1
//

OO

Es−1

ee

OO

(4.12.a)

(88)The reader can also consult Mathew, Naumann, and Noel (2017, Part 1), Bachmann and Østvær
(2022, §2), or Mantovani (2024).
(89)It is useful to avoid the commutativity assumptions. Indeed, it is easier to construct an A∞-structure
rather than an E∞-structure on ring spectra, in the classical stable homotopy category. For example,
it is a famous result of Lawson (2018) that there cannot exist an E∞-ring structure on BP.
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where a triangle containing (∗) is a homotopy exact sequence, a dashed arrow is a
boundary map of such a homotopy exact sequence (therefore the target is implicitly
suspended once), and all other triangles are commutative (including the ones obtained
by identifying the two objects 1 to a single vertex). We have therefore obtained a tower
E• : Zop

≥0 → 1/ C of objects under 1.(90)

We can then apply any homological functor(91) H : Ho C → A to the diagram (4.12.a),
yielding two exact couples that fit into a Rees system in the terminology of Eckmann
and Hilton (1966). According to Theorem 7.10 of loc. cit., both exact couples give rise
to the same spectral sequence. We apply this construction to the homological functor
[1,−]C .(92)

Definition 4.13. — Consider the above assumptions. One defines the nilpotent E-
completion of an arbitrary object X as the following homotopy limit:

X̂E := lim
n≥0

(
X⊗ En

)
.

The spectral sequence associated to the exact couples obtained from (4.12.a) by replacing
the entries 1 with 1̂

E and then applying the homological functor [1,−]C :

Es,t
1,E = πt−s(1, E⊗ Es)⇒ πt−s(1, 1̂E)

is called the E-Adams spectral sequence.(93)

Example 4.14. — 1. Applying the above construction with C = SH , and with the
associative algebra E = HFp, MU, BP respectively, one obtains the three spectral
sequences which appear in the previous section.

2. We will apply the above construction in the motivic case C = SH (k). Note that
in the motivic case, there is an additional grading coming from the Tate twist. In
particular, instead of applying the above construction to a given ring spectrum E,
we will apply it to the graded object E(∗). This implies that we will be working
with the same object as above, but equipped with an additional grading, which
will automatically be compatible with products.

The main example for us will be E = HMF2 over the field k = C. However, it is
possible to consider the two cases E = HFℓ, MGL. In addition, the analog of the
Brown-Peterson spectrum exists in motivic homotopy, a ring spectrum denoted by
BPGL. See Hu, Kriz, and Ormsby (2011), or more generally Naumann, Spitzweck,
and Østvær (2009).

Remark 4.15. — The convergence of the E-Adams spectral sequence is a delicate matter.
If Es,t

1 vanishes for s > t (which will follow in all our applications), then one gets a

(90)According to Hopkins (1999), one should call it the normalized A-Adams resolution of 1. By
tensoring with an arbitrary object X, we obtain the normalized E-Adams resolution of X.
(91)i.e., A is an abelian category and H sends a homotopy exact sequence to a long exact sequence;
(92)The general construction applies the functor [X, (−)⊗Y]C for arbitrary objects X, Y.
(93)Following the topological conventions, the differentials d∗∗

1 are of bidegree (1, 0).
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weak form of convergence as explained in Bousfield (1979), beginning of §6, and called
conditional convergence. According to loc. cit. Proposition 6.3, the strong convergence(94)

is equivalent to the vanishing: lim
r

1
(
Es,t

r

)
= 0.

In the applications, the spectral sequence will in fact be concentrated in a bounded
region from the second page onward. This implies that for any (s, t), the sequence
(Es,t

r )r≥1 stabilizes and that the filtration on the abutment is finite. (See the argument
in Section 4.1.1.)

4.3.2. The cobar construction. — Let us consider the notation of the above definition,
and assume in addition E is an A∞-object in C , or equivalently an associated algebra
object as defined by Lurie (2017, §4.1.1, Definition 4.1.1.6).

The next step is to compute the E2-term of the preceding spectral sequence. As
in topology, we associate to E a homology theory on C which to an object X of C
associates the graded E∗-module E∗X = π∗(1, E ⊗ X), where E∗ = π∗(1, E) is the
associated ring of coefficients. It follows as in Section 4.1.3, that the pair (E∗, E∗E) is
a Hopf algebroid.

To go further, we again follow the classical approach from topology highlighted by
Hopkins (1999, §5). Using the A∞-structure on E, one defines a cosimplicial diagram
CB•(E) : ∆→ C :

E //
// E⊗ Eoo

//
//
// E⊗ E⊗ Eoo

oo // · · ·

such that CBn(E) = E⊗n+1; see Mathew, Naumann, and Noel (2017, Construction 2.7).
This is called the cobar construction on E.(95) According to a classical procedure
(originally formalized by Bousfield and Kan (1972)), one can extract a tower Zop

≥0 → C

by taking partial limits:(96)

Totn CB•(E) = lim←−
i≤n

CBi(E).

Let us state explicitly the following fundamental comparison result, proved in this form
in op. cit. Proposition 2.14.

Proposition 4.16. — Under the above assumptions, there exists a canonical equiva-
lence of towers: E• ≃ Tot• CB•(E).(97)

The tower Tot• CB•(E) will be called the tower E-Adams resolution attached to E.(98)

(94)By “strong convergence”, we mean that the filtration on the abutment is exhaustive, separated
(Hausdorff) and complete;
(95)Note from loc. cit. that it admits augmentation by 1.
(96) In fact, the elegant Theorem 2.8 of op. cit., attributed to Lurie, asserts that the general ∞-functor

Tot• : Fun(∆, C )→ Fun(Zop
≥0, C )

is an equivalence of stable ∞-categories. This is a stable ∞-categorical version of the Dold-Kan
equivalence.
(97)We have neglected the natural augmentation with source 1.
(98)Here, it is understood that this is a resolution of 1.
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One deduces that for any integer t ∈ Z, the complexes E∗,t
1 from the E-Adams spectral

sequence take the following form

· · · 0→ Et → Et−1E→ Et−2(E⊗2)→ · · · → Et−s(E⊗s)→ · · ·

where E∗ sits in (cohomological) degree s = 0, and the differentials are obtained as the
alternating sum of the maps coming from the cobar-resolution of E. Using the exterior
pairing E ∗ (X)⊗E∗ E ∗ (Y )→ E∗(X ⊗ Y ), one deduces the following corollary.

Corollary 4.17. — Consider the above notation. Assume that E satisfies the follow-
ing weak Künneth property:

∀s > 1, the exterior pairing induces an isomorphism (E∗E)⊗E∗ s → E∗(E⊗s).

Then one can compute the E2-term of the E-Adams spectral sequence as

Es,t
2 = Exts,t

E∗E(E∗, E∗)

the Ext-group being computed in the category of comodules over the Hopf algebroid
(E∗, E∗E).

In our examples from topology, the weak form of the Künneth property follows from
the assumption that E∗E is flat over E∗; see Hopkins (1999, Proposition 5.7).

4.3.3. Localization and completion. — We finally recall the general tools to compute
the abutment of the previous Adams spectral sequence, still following Bousfield (1979).
According to the general philosophy developed by Bousfield and Kan (1972), this involves
the ∞-categorical analogue of completion or localization in classical algebra. To recall
these basic definitions, we will now assume that C is a presentable monoidal stable
∞-category.

We consider a 1-morphism f : L→ 1,(99) which will play the role of elements in the
(motivic) stable stem, and X be object of C .

1. For an integer n > 0, one defines the n-th (homotopy) quotient X/fn of X by f

as the homotopy cofiber of the map X ⊗ L⊗n → X.
2. One defines the completion of X at f as the following homotopy limit:(100)

X̂f := holimn

(
X/fn

)
.

3. Assuming that L is ⊗-invertible, one defines the localization of X at f as the
following homotopy limit:

X[f−1] := hocolim
(
X

f−→ X ⊗ L−1 f−→ X ⊗ L−2 → · · ·
)

where we have denoted by L−n the n-th tensor power of the ⊗-inverse of L, and
simply by f the morphism induced by f after the obvious tensor product.

(99)Usually, it will be a homotopy class but the constructions will not depend on a choice of representa-
tive;
(100)This is where we use the assumption that C is presentable;
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These constructions can be extended to an n-tuple I = (fi : Li → 1) in an obvious way
(left to the reader). We will (loosely) say that I is an ideal of 1, and use the notation
X/I, X̂I , X[I−1].

In order to state the next result, we will need to assume the existence of a t-structure t

on C .(101) We still use homological conventions, write A ≥ 0 for non-negative objects
and let π0 be the associated (co)homological functor. We will assume that C is left-
complete.(102) We will also assume that t is compatible with the tensor structure in the
usual sense (see footnote 60, page 46).

We can now state the following pretty generalization of Bousfield (1979, Theorems 6.5,
6.6), due to Bachmann and Østvær (2022) and Mantovani (2024).

Theorem 4.18. — Consider the above notation. We let E be an E∞-algebra in C such
that E ≥ 0 and X be a connective object with respect to t.(103) Let I = (fi : Li → 1) be
an ideal of 1 as above.

1. Assume that for all i, Li is non-negative, strongly dualizable with a non-negative
strong dual, and π0(E) ≃ π0

(
1/I

)
. Then: X̂E = X̂I .

2. Assume that for all i, the tensor product with Li is a t-exact equivalence of ∞-
categories and π0(E) ≃ π0

(
1[I−1]

)
. Then: X̂E = X[I−1].

We refer the reader to Bachmann and Østvær (2022, Theorem 2.1+2.2),(104) or to
Mantovani (2024).

Example 4.19. — 1. Let X be a connective spectrum with respect to the canonical
t-structure on SH . Then, for a prime ℓ ∈ k×, one has:

X̂HFℓ
= X̂ℓ, X̂HZ = X̂MU = X, X̂BP = X[ℓ−1].

2. Let X be a connective motivic spectrum with respect to the homotopy t-structure
on SH (k). Then, by applying the above theorem and Example 3.24, one deduces:

X̂MGL = X̂HMZ = X̂η, X̂HMFℓ
= X̂(ℓ,η), X̂BPGL = X[ℓ−1].

3. Consider X as in the previous point. Assume in addition that (−1) is a sum of
squares in k and that ℓ ̸= 2. Then: X̂(ℓ,η) = X̂ℓ. See Mantovani (2024, Lemma
3.3.1).

4. Assume that (−1) is a sum of squares in k and that k has finite 2-cohomological
dimension. Then the HMF2-nilpotent completion of the motivic sphere spectrum
agrees with its 2-completion:

1̂HMF2 = 1̂2.

(101)Or, equivalently, its homotopy category Ho C following standard usage in the literature.
(102)i.e., for any object X in C , the canonical map X −→ colim

n→−∞

(
τ≥n(X)

)
is an isomorphism.

(103)In other words, homologically bounded below.
(104)The second point can easily be deduced from loc. cit. Theorem 2.1.
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This fact was first proved, over algebraically closed fields, by Hu, Kriz, and Ormsby
(2011). The more general case is proved in Mantovani (2024, Lemma 3.3.2) (based
on loc. cit.).

Remark 4.20. — We do not enter into the details, but it is important to note that another
corollary of the above theorem is that, under the stated hypothesis, the nilpotent E-
localization also coincides with the (left Bousfield) localization with respect to E, which
consists in inverting maps inducing isomorphisms in E∗-homology — beware that in
motivic homotopy, one has to consider the bigraded homology theory E∗∗. The resulting
localization functor LE, following the general procedure described in Section 1.4.3, has
good properties — for example, it respects E∞-ring spectra.

Given all these preparations, we can now state the existence and form of the motivic
Adams spectral sequence, first introduced by Morel (1999), and more thoroughly studied
by Hu, Kriz, and Ormsby (2011) and Dugger and Isaksen (2010). We state it only over
the base field C and modulo 2 as this is our main focus. We leave to the reader the
formulation of the other cases.

Proposition 4.21. — We work over the base field k = C, and modulo the prime ℓ = 2.
Then there exists a weight graded motivic Adams spectral sequence, with a trigraded
multiplicative structure, of the following form:

Es,t,w
2 = Exts,t,w

A (M2, M2)⇒ πt−s,w

(
1̂

)
=: π̂C

t−s,w

with differentials on the r-th page of tri-degree (r, r − 1, 0).
– the Ext group is computed in the category of bigraded comodules over the Hopf

algebroid (A, M2) (as defined in 4.2), s being the degree of the extension group,
and (t, w) being the internal degree of that category;

– on the abutment, 1̂ denotes the 2-completion (defined in 4.3.3) of the motivic sphere
spectrum, or equivalently its nilpotent HMF2-completion according to the preceding
example.

In addition, the spectral sequence is strongly convergent, and the filtration on the abut-
ment is finite in each motivic stem f = (t− s).

Indeed, this is simply the HMF2-Adams spectral sequence constructed above. To get
the correct form of the E2-term, one needs the appropriate weak Künneth property to
apply Corollary 4.17. This is proved in Dugger and Isaksen (2010, Proposition 7.5),
but it follows more generally from the fact HMFℓ is cellular according to Hoyois (2015)
using Dugger and Isaksen (2005). The last assertion follows from Dugger and Isaksen
(2010, Corollary 7.15), which establishes vanishing properties for the motivic Adams
spectral sequence analogous to that of the Adams spectral sequence.

Remark 4.22. — As in the topological case, Isaksen, Wang, and Xu (2023) (and all the
other papers in this topic) uses a different grading convention to depict the r-th page
of the motivic Adams spectral sequence. More precisely, the group Es,t,w

r is displayed
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on a plane, following the conventions of the Adams charts, as described in Step 1 of
Section 4.1.2:

– the lines are indexed by the integer s, which is called the Adams degree. In
particular, the picture is concentrated in degree s ≥ 0;

– the columns are indexed by the integer f = t− s, which is called the stem.
– the picture has to be thought of as a projection of a three-dimensional picture,

along the axis represented by the index w, called the weight.
To summarize, a group of grading (s, t, w) is pictured in the point of coordinates
(f = t − s, s). Then the differentials on the r-th page have tri-degree (1, r − 1, 0).
Moreover, when displaying the Er-term for r big enough, each column represents the
gradings of the abelian group π̂C

f,∗.

There is a deep interplay between the motivic Adams spectral sequence and the
(classical) Adams spectral sequence. Roughly speaking, one gets back the latter from
the former by inverting the motivic element τ . More precisely, building on Corollary 4.11,
Dugger and Isaksen proved the following remarkable result.(105)

Theorem 4.23. — Keep the assumptions of the preceding proposition. Then the com-
plex realization functor induces an isomorphism of weight-graded M2[τ−1]-linear spectral
sequences:

E∗∗∗
∗,HMF2 [τ−1] ∼−→ E∗∗

∗,HF2 ⊗F2 M2[τ−1]
where we have indicated the ring spectra for more clarity.

In fact, one can derive a direct proof using the construction of E∗-Adams spectral
sequences from the cobar resolution and Corollary 4.10.

As both spectral sequences are strongly convergent, one deduces the following corol-
lary.

Corollary 4.24. — Consider the above assumptions. Then the element τ lifts to a
(homological) bidegree (0,−1) element in the π̂C

∗∗ motivic stable homotopy groups of the
2-completed motivic sphere, that we continue to denote by τ . Moreover, the complex
realization functor induces an isomorphism of bigraded M2[τ−1]-algebras:

π̂C
∗∗[τ−1] ≃ πS

∗⊗Z Z2[τ, τ−1]

where on the left-hand side, one has localized with respect to the element τ , and the
isomorphism maps the motivic class τ to the indeterminate τ on the right-hand side.

In particular, we have obtained a map

(4.24.a) τ : 1̂(−1)→ 1̂

which lifts the previously defined map τ : HMF2(−1)→ HMF2. This is a key player of
the computations of Isaksen, Wang, and Xu (2023). The reader may appreciate the

(105)This is stated explicitly in Isaksen (2019, Proposition 3.0.2).
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direct and elegant construction of this lift due to Hu, Kriz, and Ormsby (2011, Remark
following Lemma 23) and based on Morel’s Theorem 3.11.

Remark 4.25. — One can check that the isomorphism of the above corollary is compat-
ible with the one constructed by Levine in Theorem 3.12 for k = C, using the canonical
map πC

∗∗ → π̂C
∗∗.

4.4. Deforming homotopy theories via the motivic class τ

4.4.1. The special fiber of τ . — We learned in the end of the previous section that
inverting the motivic element τ — which in particular kills all τ -torsion elements —
allows one to recover the classical Adams spectral sequence from the motivic Adams
spectral sequence.

On the other hand, the pages of the motivic Adams spectral sequence may contain
non-trivial τ -torsion classes, and they sometimes hide extensions that still are visible
in the abutment. To better understand this phenomenon, Isaksen (2019, Chapter 5),
introduces the cofiber of τ denoted by Cτ and defined as the following homotopy cofiber
in the ∞-category of 2-complete motivic spectra(106)

(4.25.a) 1̂(−1) τ−→ 1̂
i−→ Cτ

∂−→ 1̂(−1)[1].

This procedure of killing homotopy classes is very classical. A remarkable result of
Gheorghe (2018) is that, in this particular case, the cofiber Cτ not only acquires a ring
structure in homotopy category, but can also be equipped with an E∞-ring structure
compatible with the canonical map i. This allows one to define the∞-category Cτ−mod
of modules over Cτ , which can be thought of as τ -torsion 2-complete motivic spectra
over C. Although preliminary computations of Isaksen (2019, Proposition 6.2.5) may
suggest such a connection, the following beautiful result proved by Gheorghe, Wang,
and Xu (2021, Corollary 1.2) reveals another surprising bridge between motivic and
classical homotopical invariants.

Theorem 4.26. — With the above notation, there exists a canonical equivalence of
stable ∞-categories

Cτ −modcell ≃ Stable(BP∗BP− comodev)

where:
– the left-hand side is made by the cellular Cτ -modules, i.e., the full sub-∞-category

spanned by colimits of Cτ -modules of the form C(τ)(q)[p] for any pair (p, q) ∈ Z2;
– the right-hand side is Hovey’s stable ∞-category of even comodules over the Hopf

algebroid (BP∗, BP∗BP), obtained by localizing complexes of such comodules along
homotopy isomorphisms.

(106)therefore, it can be computed by first taking the homotopy cofiber in the motivic homotopy category
and then applying the 2-completion functor;
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Remark 4.27. — 1. This result can be reformulated in terms of stacks: the ∞-
category of cellular Cτ -modules is equivalent to the ind-∞-category of perfect
complexes on the moduli stack of formal group laws MF GL over Z2 (see also Re-
mark 4.3). This interpretation essentially underlies the proof of Corollary 1.2 given
by Gheorghe, Wang, and Xu (2021), as discussed after Remark 4.15 therein.

2. The preceding theorem was generalized by Bachmann, Kong, Wang, and Xu (2022)
through the construction of the so-called Chow-t-structure on the stable motivic
homotopy category SH (k) for any base field k.

This t-structure can be described as the unique one whose non-negative objects
are generated under colimits and extension by the Thom spaces Th(v) of a virtual
vector bundle v over a smooth and proper k-scheme X.(107) The authors then relate
the invariants associated with this t-structure — such as truncations, its heart,
and heart-valued objects — to even comodules over appropriate Hopf algebroids,
after inverting the characteristic exponent e of the base field k.

As an example, they identify the cellular heart of the Chow-t-structure on
SH(k)[e−1] with the e-localized ∞-category of (MU∗, MU∗MU)-modules (see
Theorem 1.12).

The important point from the computational perspective is the following corollary,
which follows from the previous theorem (see Gheorghe, Wang, and Xu (2021), Theo-
rem 1.3 for the statement and Part 2 for details).

Corollary 4.28. — There is an isomorphism of spectral sequences between the motivic
Adams spectral sequence for Cτ and the algebraic Adams–Novikov spectral sequence.(108)

4.4.2. Final procedure to compute motivic and classical stable stems. — The innovative
ingredient introduced by Isaksen, Wang, and Xu (2023) for computing stable stems out
of motivic stable stems is the following deformation diagram

(4.28.a) 1̂[τ−1] 1̂oo

i
// Cτ

∂
oo

where the left-hand (resp. right-hand) side is thought as the generic (resp. special) fiber.
Concretely, this diagram means two facts:

1. the motivic Adams spectral sequence is constrained along the maps i and ∂ by the
algebraic Adams–Novikov spectral sequence, which corresponds according to the
previous theorem to the Adams spectral of the special fiber Cτ ;

(107)The name is likely inspired by the work of Bondarko, who defined the Chow weight structure on
the category of motivic complexes over k using similar types of generators. See, e.g., Bondarko (2010,
§7.1) for effective motivic complexes.
(108)The latter is an algebraic spectral sequence based on resolutions of BP∗BP-comodules, and
computes the E2-term of the Adams–Novikov spectral sequence. See loc. cit. §9.1, and also Remark
4.2 for a broader picture.
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2. the generic fiber computes the classical Adams spectral sequence, according to
Theorem 4.23.

From a practical point of view, this leads to the following computational strategy,
which both draws on and refines the classical approach to computing stable stems
described in Section 4.1.2:
Stepτ 1. Begin by computing the E2-term of the motivic Adams spectral sequence. This

tri-graded object captures refined information, including torsion in the motivic
weight. The computation relies on algebraic tools such as the May spectral
sequence, and reduces to an algorithmic problem which can be handled by
computer.

Compute the pages of the algebraic Adams–Novikov spectral sequence using
similar algebraic methods, that can also be handled by computer.

Stepτ 2. The previous step gives the determination of the Adams spectral sequence for
the cofiber of τ . Then the right part of the deformation diagram allows one
to determine differentials of the motivic Adams spectral sequence, and also
additional refined information (notably, Toda brackets). Ultimately, this allows
one to determine the Adams motivic E∞-page up to a fixed range.

Stepτ 3. Solve the extension problem for determining the motivic stable stem from the
information of the E∞-term (as in Step 3 in the original strategy 4.1.2), using
again the information coming from the special fiber. This implies finding the
so-called hidden extensions(109) and in particular with respect to the motivic
element τ .

Stepτ 4. The last step is obvious, and uses the left part of the deformation diagram:
read off the classical stable stems (and information on the classical Adams
differentials) from the computations obtained in the previous step.

This motivic approach has led to a significant breakthrough in the effective compu-
tation of stable stems. Thanks to the method introduced by Isaksen, Wang, and Xu
(2023), it is now possible to push the determination of the 2-primary component(110) of
the stable homotopy groups of spheres from dimension 66 up to dimension 90.(111)

4.4.3. Towards synthetic homotopy. — As in topology, Stepτ 2&3 cannot be made
algorithmic and carried out by a computer. In particular, one of the key technical
tools that the authors had to use is the construction of an intermediate motivic ring
spectrum over C, called the motivic modular forms spectrum. It is the motivic analog
of the famous topological modular forms spectrum of Ando, Hopkins, Strickland (see e.g.
Goerss, 2010). The way they construct this object is both interesting and relevant to
conclude this lecture.

(109)as precisely defined in Isaksen, Wang, and Xu (2023), Definition 2.10;
(110)this is by far the most difficult primary part of the stable stems;
(111)Albeit a few remaining uncertainties: four unresolved differentials in the motivic Adams spectral
sequence, see Table 9 in loc. cit.
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One still works, as above, in the stable monoidal ∞-category SH (C)∧
2 , the 2-

completed motivic stable homotopy category over C.(112) As in the previous theo-
rem and following Dugger and Isaksen (2005), one restricts to the full sub-∞-category
SH cell(C)∧

2 of cellular 2-complete motivic spectra; that is the full sub-∞-category of
SH (C)∧

2 spanned by colimits of motivic sphere spectra 1̂(q)[p] for (p, q) ∈ Z2.(113)

With the aim of describing the latter ∞-category, Gheorghe, Isaksen, Krause, and
Ricka (2022) discovered the idea that one can work directly with the Adams resolutions
of spectra, framed in the language of filtered spectra. This leads them to the ∞-
category Fun(Zop, SH ∧

2 ) of filtered 2-complete spectra, which is presentable, stable
and monoidal (using the Day convolution product). Via a fully faithful embedding, one
can consider the tower Adams resolutions of spectra defined in 4.16 viewed as objects
in this ∞-category. The importance of the Adams–Novikov spectral sequence (Section
4.1.3) justifies specifically considering the tower Adams resolution associated with the
2-completion M̂U of MU:

T• := Tot• CB•(M̂U).

In order to make the next theorem work, one looks at a suitably truncated tower,
denoted by Γ⋆(S0) in loc. cit.,(114) whose w-th term is given by the following formula:

Γw(S0) := Tot•(τ≥2w CB•(M̂U))

where τ≥2w is the truncation functor associated with the canonical t-structure on SH ,
and we apply it term-wise to the cosimplicial object CB•(M̂U) (see Definition 3.2 of
loc. cit.).(115) It is proved in loc. cit. that Γ⋆(S0) is actually an E∞-object in filtered
spectra. In particular, one can consider the ∞-category of modules Γ⋆(S0)−mod. The
following result, Theorem 6.12 of loc. cit., sheds light on the relation between classical
and motivic invariant that we have met on several occasions in this section.

Theorem 4.29. — There is an explicit pair of mutually inverse equivalences of stable
monoidal ∞-categories:

Γ⋆(S0)−mod
∼
// SH cell(C)∧

2 .
∼

oo

(112)From what we have seen before, it can be described in full generality with the left Bousfield
localization of SH (C) with respect to the motivic spectrum 1/2. Under an appropriate finiteness
assumption, this is also the Bousfield localization with respect to HMF2; see Remark 4.20.
(113)The author emphasizes that, from a motivic perspective, cellular objects should also be viewed as
ind-Artin–Tate objects, since we work over the algebraically closed field C. Artin–Tate motives play
a key role in the theory of motivic complexes and in our current understanding of L-functions and
periods over number fields.
(114)The symbol ⋆ here replaces the symbol • that we have used up to now to suggest the underlying
filtration on objects. They serve exactly the same purpose.
(115)The effect of this construction is that the spectral sequence associated to Γ•(S0) is a truncation of
the Adams–Novikov spectral sequence associated to MU. See loc. cit. Remark 3.4.
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Thanks to this surprising equivalence, the authors were able to define the motivic
modular forms spectrum mmf in the right-hand side ∞-category, by transporting a
topological construction done in filtered 2-complete spectra. In fact, one can also realize
the fundamental deformation diagram (4.28.a) directly in Γ⋆(S0)−mod.

4.4.4. Epilogue. — The construction and properties of Γ⋆(S0)−mod have since been
axiomatized under the name synthetic homotopy theory by Pstrągowski (2023). Though
arising from motivic methods, this framework is now fully topological and expected to
play a central role in the future of algebraic topology. This stands as a beautiful example
of the deep and productive interactions between algebraic geometry and algebraic
topology through motivic homotopy theory.
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