
INTRODUCTION TO THE P=W CONJECTURE
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1. Symmetries of the cohomology of algebraic varieties. Let X be a complex smooth
algebraic variety, endowed with a holomorphic symplectic form. P=W phenomena provide a
unified explanation for symmetries, of very different origin, of the cohomology ring H∗(X,Q).
These symmetries are recalled below.

(i). If (X,α) is a polarized projective manifold of dimension 2n, then the hard Lefschetz
theorem gives

αi : H2n−i(X,Q) ≃− // H2n+i(X,Q).

(ii). If further X admits a symplectic form, i.e. σ ∈ H0(X,Ω2
X) with σn ̸≡ 0, then the

non-degeneracy of σ implies

σi : Ωn−i
X

≃− // Ωn+i
X .

Taking cohomology, we obtain the symplectic hard Lefschetz theorem

σi : Hq(X,Ωn−i
X ) ≃− // Hq(X,Ωn+i

X ).

Equivalently, if F • is the Hodge filtration on H∗
C = H∗(X,C), then

(0.1) σi : Grn−i
F Hd

C
≃− // Grn+i

F Hd+2i
C .

(iii). If f : X //B is a projective smooth morphism of relative dimension n (with X and B

not necessarily proper), then the relative version of hard Lefschetz theorem reads

αi : Rn−if∗Q ≃− // Rn+if∗Q.

Taking cohomology, we obtain

αi : Hp(B,Rn−if∗Q) ≃− // Hp(B,Rn+if∗Q).

Equivalently, if L• is the Leray filtration associated to f on H∗ = H∗(X,Q), then

αi : Grn−i
L Hd ≃− // Grn+i

L Hd+2i.

(iv). If f : X //B is not necessarily smooth, then relative hard Lefschetz theorem continues
to hold

(0.2) αi : GrPn−iH
d ≃− // GrPn+iH

d+2i,
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provided that the Leray filtration L• is replaced with the perverse Leray filtration P•
associated to f . If B is affine, then the perverse filtration is the kernel filtration of a
general flag by [5, Thm 4.1.1], i.e.

(0.3) PkH
d = Ker{Hd(X,Q) //Hd(f−1(Λd−k−1),Q)},

where Λk is a general k-dimensional linear section of B ⊆ AN .

All the previous symmetries require some degree of properness. Analogous hard Lefschetz
symmetries in the non-proper case are regarded as curious phenomena.

(v). If (X,∆) is a log symplectic pair with only simple normal crossings, i.e. σ ∈ H0(X,Ω2
X(log(∆)))

with σn ̸≡ 0, then the non-degeneracy of σ gives that

σi : Ωn−i
X (log∆) ≃− // Ωn+i

X (log∆).

Taking cohomology, we obtain

σi : Hq(X,Ωn−i
X (log(∆))) ≃− // Hq(X,Ωn+i

X (log(∆))).

Equivalently, if F • is the Hodge filtration on H∗
C = H∗(X \∆,C), then

σi : Grn−i
F Hd

C
≃− // Grn+i

F Hd+2i
C .

Recall that H∗ is a mixed Hodge structure with Hodge and weight filtration F • and
W• respectively. Suppose that H∗ is Hodge–Tate, i.e. GrW2kH

d
C = GrkFH

d
C (roughly in

each cohomological degree the two filtrations coincide). Then H∗ has the curious hard
Lefschetz property, i.e. there exists σ ∈ GrW4 H2 such that

(0.4) σi : GrW2(n−i)H
d ≃− // GrW2(n+i)H

d+2i.

See [11, Thm 1.7].

2. P=F for compact symplectic variety. In the proper case, the analogy between the
symplectic and relative hard Lefschetz in (0.1) and (0.2) is explained in the work of Shen and
Yin [23].

Theorem 2.1 (P=F). [23, Theorem 0.2] For any projective irreducible symplectic variety M

equipped with a Lagrangian fibration f : M //B, we have

GrPp H
p+q(M,C) ≃ GrpFH

p+q(M,C).

The perverse filtration on H∗(M,C) can be identified with the weigth filtration of a Hodge–
Tate limiting mixed Hodge structure of a degeneration of irreducible symplectic varieties defor-
mation equivalent to M ; see [12] and the survey [14]. A categorification of P=F, formulated in
terms of quasi-isomorphisms of complexes of coherent OB-modules have been conjectured in [22,
Conj. 1.2], and recently proved in [21, §19].1 Partial results for singular irreducible symplectic

1Remarkably, X and B are no longer required to be proper!
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Figure 1. Classical, symplectic, relative and curious Hard Lefschetz.

varieties M are due to [9, Thm 0.4] when M admits a symplectic resolution, or [27] when M

has only isolated singularities.

3. P=W phenomena in general. P=W phenomena have been conjectured in the attempt
to interpret curious hard Lefschetz (0.4) as a manifestation of relative hard Lefschetz (0.2). The
general structure of a P=W statement should look like the following.

Meta P=W conjecture 3.1. Let M be a smooth complex manifold of dimension 2n endowed
with the complex structures I and J (eventually other assumptions may be imposed).

Suppose that:

• f : (M, I) //B is a proper holomorphic map of relative dimension n (most likely with
abelian generic fiber), so that the cohomology of M satisfies the relative hard Lefschetz
theorem, and
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• (M,J) is biholomorphic to an open variety X \∆ whose cohomology is Hodge–Tate and
has the curious hard Lefschetz property.

Then there exists a homeomorphism ϕ : M //M such that

PkH
d(M,Q) = ϕ∗W2kH

d(M,Q),

which intertwines relative and curious hard Lefschetz.

It is still unclear what the larger class of varieties satisfying the meta P=W conjecture should
be. For this reason, the assumptions of the meta conjecture are deliberately vague; see also [2,
§4.4], [10, §4] and the negative result [18, §5.6].

4. P=W conjecture for surfaces. The P=W conjecture is essentially settled in dimension
two. We follow the short proof of [10, §4], which overrides all previous references in the literature
of P=W phenomena for surfaces.2 Suppose that (X,∆) is an snc log Calabi–Yau surface, i.e.
there exists a no-where vanishing section σ ∈ H2,0(X,Ω2

X(log(∆))) = H0(X,KX +∆).
If H∗(X\∆,Q) is Hodge–Tate, then ∆ is a cycle of rational curves, and (X,∆) is birational to

a toric pair (XΣ,∆tor). The toric moment map µΣ : XΣ
//D induces an almost toric moment

map µ : X \ ∆ //D, see [10, Thm 4.1]. The map µ can be endowed with the structure of
a holomorphic elliptic fibration f : M //B with at worst nodal fibers, so that a general
fiber F of f is exchanged with a general fiber of µ, i.e. a real torus isotopic equivalent to
T = {|x| = r, |y| = s} ⊂ XΣ 99K X \ ∆, where (x, y) are local coordinates around a node of
∆tor, and 0 < r, s ≪ 1, e.g. (P2, xyz = 0), see [10, Prop. 4.3].3

F ⊂ M
≃diffeo. //

f
��

X \∆ ⊃ T

µ

��
B

≃diffeo. // D.

Let’s compare the graded pieces of the Leray, perverse and weigth filtrations. We denote by
bi the Betti numbers of M .

The Leray filtration is trivial, since all cocycles of M are concentrated on the fibers of f ,
i.e. Hd(M,Q) = H0(B,Rdf∗Q). In particular, if b2 ̸= 1, we do not recognize any numerical
hard Lefschetz symmetry. This is why it is essential to replace the Leray filtration with the
perverse filtration. The smoothness of X \∆ implies that GrWk H i = 0 for k < i, and so bi = 0

for i > 2 by curious hard Lefschetz.4 Therefore, relative and curious hard Lefschetz imply that

2At the time Harder wrote [10], a similar proof appeared in [25] too, for the case of Painlevé surfaces.
3In many places in the literature, the commutative square is a datum of the local setting, but Harder shows

that it follows simply from the fact that (X,∆) is a log Calabi–Yau surface of maximal intersection (which is
the case in all known examples).

4In general, in any dimension, if the cohomology of a smooth algebraic manifold X \∆ of dimension 2n has
the curious Hard Lefschetz property, then Hd(X \∆,Q) = 0 for d > 2n. Note that the cohomology of any affine
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Figure 2. Leray, perverse and weigth filtration.

the perverse and weight filtrations are possibly nontrivial only in cohomological degree 2 and
in perversity 1 and 2 (weights 2 and 4 respectively). By (0.3), we have

P1H
2(M,Q) = ker{H2(M,Q) //H2(F,Q)}.

On the other hand, given the natural inclusion i : X \∆�
� //X, we write

W2H
2(M,Q) = ker{H2(M,Q) //H0(X,R2i∗Q)} = ker{H2(M,Q) //H2(T,Q)}.

The tori F and T are isotopic equivalent, and the P=W conjecture holds.

Remark 4.1. It is expected that the isotopy of the tori F and T is a general geometric incarna-
tion of the cohomological P=W conjecture in top perversity; see [19, Thm A]. This is part of the
so-called geometric P=W conjecture; see [15, 19]. It is not clear though what a geometric ver-
sion of the cohomological P=W conjecture in any degree should be, and a homotopy statement
is definitely too week; see [19, Rmk 6.2.11]. Such a geometric statement should explain how to
describe the discriminant of f : M //B in terms of the topology of the pair (X,∆). At the end
of the introduction of [24], Simpson presents a problematic configuration of discriminant circles
in a 4-dimensional example.5

5. P=W conjecture for character varieties.

Definition 5.1. The Betti moduli space or character variety of a complex smooth projective
curve C of genus g is the affine GIT quotient

MB(g, n, d) :=

{
(A1, B1, . . . , Ag, Bg) ∈ GLn(C)×2g

∣∣ g∏
j=1

[Aj , Bj ] = e2πi
n
d 1n

}
//GLn(C)(0.5)

It parametrises isomorphism classes of semistable representations of the fundamental group of
C with prescribed central monodromy around a puncture.

Theorem 5.2. The P=W conjecture holds for smooth character variety, i.e. gcd(n, d) = 1.

variety satisfies this vanishing, but not all varieties with curious Hard Lefschetz are affine, e.g. the toric blow-up
of P2 at ≥ 9 points lying in xyz = 0 but not nodes.

5A proof of the geometric P=W conjecture for this 4-dimensional example follows essentially from [26, §6.2].
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Proof. Proved for n = 2 in [1], for g = 2 in [4], and unconditionally in [16, 13, 17]. □

Remark 5.3 (History of curious hard Lefschetz). Curious hard Lefschetz for Betti moduli
space was first observed by Hausel and Rodriguez–Villegas for (n, d) = (2, 1). It was suggested
by the symmetries of combinatorial formulas counting representations over finite fields. These
representations are in correspondence with points of MB over finite fields Fq, and their number
is a polynomial in q, called E-polynomial, whose coefficients are the Euler characteristic of
GrWk H∗

c (MB). Hausel and Rodriguez–Villegas observed that the E-polynomial is palindromic
and, studying the cup product structure on H∗(MB), they conjectured curious Hard Lefschetz
and proved it in rank 2. In [1], de Cataldo, Hausel and Migliorini first proposed the P=W
conjecture as an explanation of the new symmetry.

After that, in [20], Mellit proved curious hard Lefschetz, in any rank and under the smoothness
assumption gcd(n, d) = 1 (more generally for smooth character varieties of a curve with finitely
many punctures), independently of P=W. In [20], he deforms the Betti moduli space to a
character variety with very general monodromy at a new extra puncture. This latter variety is
endowed with a vector bundle whose total space admits a stratification in strata (C∗)a × Cb,
which all enjoy the curious hard Lefschetz property with respect to the restriction of the same
global 2-form. Finally, he pushes back the curious hard Lefschetz property to the original
character variety, see [20, §8].6 The proof of the P=W conjecture in [16] relies on [20], while
[13] provides an alternative independent proof of curious hard Lefschetz.

Note that the existence of log symplectic compactifications of character varieties would pro-
vide a new geometric explanation of curious hard Lefschetz.

Conjecture 5.4. Character varieties admit log symplectic compactifications.

At the moment, the conjecture is known to hold trivially for n = 1, (d, g) = (0, 1) by [19,
Thm E and D], and n = 2 on a punctured sphere with general monodromy by [7, Cor. 1.9].7

Remark 5.5. (Multiplicativity of the perverse filtration) The weight filtration is multiplicative
under cup product, i.e.

∪ : WkH
d ×Wk′H

d′ //Wk+k′H
d+d′ ,

see [6, Corollaire 8.2.11]. Hence, P=W implies that the perverse filtration is compatible with
cup product. In fact, by [4, Thm 0.6], P=W for smooth character varieties is equivalent to
the multiplicativity of the perverse filtration. In [17], Maulik, Shen and Yin have recently
proved the multiplicativity of the perverse filtration for so-called dualizable abelian fibrations
with Fourier vanishing, which includes families of compactified Jacobians of integral curves

6A similar strategy have been employed in the proof of P=W too both in [16, 13].
7In [19, 7], the authors exhibit log Calabi–Yau compactifications of character varieties, i.e. KX + ∆ ∼ 0.

Note that they are actually log symplectic. Indeed, by curious hard Lefschez [20], there exists σ ∈ F 2H2
C =

H0(X,Ω
[2]
X (log∆)) with σn ̸= 0. Since (X,∆) is log Calabi–Yau, then σn ∈ H0(X,Ω

[2n]
X (log∆) = H0(X,KX +

∆) = H0(X,O) is nowhere vanishing.
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with planar singularities (with a section, or for special twisted families with no sections). In
particular, using the reduction step in [13, §8], they provide a third alternative proof of the
P=W conjecture. Note that the multiplicativity of the perverse filtration fails in general, see
[28, 29].

Examples 5.6. [29, Thm 1.5] Let g : S //B be a proper morphism from a smooth quasi-
projective surface and a smooth quasi-projective curve. Then the perverse filtration f is au-
tomatically multiplicative, but the induced morphisms of Hilbert scheme g[n] : S[n] //B(n) is
multiplicative only if f is an elliptic fibration. The converse holds if n = 2, or f is a fibration
of Hitchin type, i.e. f : S //A1 with H∗(S,Q) ≃ H∗(g−1(0),Q).

Remark 5.7. The P=W phenomena in the compact case [23, 12, 21], §4, Theorem 5.4 and
Theorem 5.6 suggests that symplectic structures should be key ingredients of P=W phenomena.
However, the symplectic nature of character varieties does not seem to play an essential role in
[16, 13, 17], except possibly [20, §5-7].

Remark 5.8 (Singular character varieties). In the singular case, Poincaré duality and relative
hard Lefschetz theorems fail for singular cohomology. These symmetries can be restored taking
instead intersection cohomology. In [3, Question 4.1.7], de Cataldo and Maulik8 proposed the
PI=WI conjecture for the intersection cohomology of singular character varieties, proved only
for (d, g) = (0, 1) and (d, g, n) = (0, 2, 2) in [8, Main Thm] (leaving aside the smooth cases).
See [18, §5] for partial results in rank two, in particular a numerical evidence for curious hard
Lefschetz in [18, Cor. 1.5].

At the moment, curious hard Lefschetz is still unknown in arbitrary degree d. The current
proofs of the P=W conjectures rely on the multiplicative structure of singular cohomology.
However, intersection cohomology does not have a canonical ring structure. This means that
the proofs in the smooth context do not naturally extend to the singular case, in particular
to the fundamental case d = 0, thus challenging the community to understand better P=W
phenomena.

Acknowledgment. I warmly thank Mark de Cataldo, Luca Migliorini, Junliang Shen, Szilárd
Szabó for useful comments on a preliminary version of these notes.
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